当前位置: 首页 > news >正文

神经网络在机器学习中的应用:手写数字识别

        机器学习是人工智能的一个分支,它使计算机能够从数据中学习并做出决策或预测。神经网络作为机器学习的核心算法之一,因其强大的非线性拟合能力而广泛应用于各种领域,包括图像识别、自然语言处理和游戏等。本文将介绍如何使用神经网络对MNIST数据集中的手写数字进行识别。

❤❤❤喜欢的点个关注吧~~~

神经网络基础

神经网络由多个层组成,每层包含多个神经元。每个神经元对输入数据进行加权求和,然后通过一个激活函数来生成输出。最常见的激活函数包括ReLU、Sigmoid和Tanh。神经网络通过前向传播计算输出,并通过反向传播算法调整权重,以此来最小化损失函数。

手写数字识别问题

        MNIST数据集是一个包含了70000个手写数字的图像集,每个图像是一个28x28像素的灰度图,标签是0到9的数字。这个数据集通常用于训练和测试图像识别模型。

使用TensorFlow构建神经网络

        TensorFlow是一个开源的机器学习库,广泛用于神经网络的构建和训练。以下是使用TensorFlow和Keras API构建一个简单的神经网络模型来识别MNIST手写数字的示例代码。

import tensorflow as tf
from tensorflow.keras import layers, models# 下载MNIST数据集
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()# 数据预处理
x_train, x_test = x_train / 255.0, x_test / 255.0
x_train = x_train.reshape(-1, 28, 28, 1)  # 添加单通道维度
x_test = x_test.reshape(-1, 28, 28, 1)# 构建模型
model = models.Sequential([layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3, 3), activation='relu'),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3, 3), activation='relu'),layers.Flatten(),layers.Dense(64, activation='relu'),layers.Dense(10, activation='softmax')
])# 编译模型
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])# 训练模型
model.fit(x_train, y_train, epochs=5)# 评估模型
test_loss, test_acc = model.evaluate(x_test, y_test)
print('Test accuracy:', test_acc)

结果分析

        上述代码首先下载并预处理MNIST数据集,然后构建了一个包含卷积层、池化层和全连接层的神经网络模型。模型使用Adam优化器和稀疏分类交叉熵作为损失函数进行编译。经过5轮迭代训练后,模型在测试集上的准确率可以超过98%。

结论

        神经网络在图像识别任务中表现出色,通过简单的卷积神经网络结构,我们就能在MNIST数据集上达到很高的准确率。随着网络结构的复杂化和训练数据的增加,神经网络的性能还有进一步提升的空间。

        这篇文章和代码提供了一个神经网络在机器学习中应用的基本示例。神经网络的潜力巨大,通过不断的研究和开发,它们将在更多领域展现其强大的能力。

请注意,运行上述代码需要安装Python环境和TensorFlow库。您可以通过运行

pip install tensorflow

来安装TensorFlow。

 

相关文章:

神经网络在机器学习中的应用:手写数字识别

机器学习是人工智能的一个分支,它使计算机能够从数据中学习并做出决策或预测。神经网络作为机器学习的核心算法之一,因其强大的非线性拟合能力而广泛应用于各种领域,包括图像识别、自然语言处理和游戏等。本文将介绍如何使用神经网络对MNIST数…...

QT拖放事件之四:自定义拖放操作-利用QDrag来拖动完成数据的传输-案例demo

1、核心代码 #include "Widget.h" #include "ui_Widget.h" #include "MyButton.h"Widget::Widget(QWidget *parent): QWidget...

Spring Boot应用的部署与扩展

Spring Boot应用的部署与扩展 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 引言 Spring Boot作为现代化Java应用的首选框架之一,以其简化的配置…...

Spring底层原理之bean的加载方式八 BeanDefinitionRegistryPostProcessor注解

BeanDefinitionRegistryPostProcessor注解 这种方式和第七种比较像 要实现两个方法 第一个方法是实现工厂 第二个方法叫后处理bean注册 package com.bigdata1421.bean;import org.springframework.beans.BeansException; import org.springframework.beans.factory.config.…...

大数据面试题之Spark(5)

Spark SQL与DataFrame的使用? Sparksql自定义函数?怎么创建DataFrame? HashPartitioner和RangePartitioner的实现 Spark的水塘抽样 DAGScheduler、TaskScheduler、SchedulerBackend实现原理 介绍下Sparkclient提交application后,接下来的流程? Spark的几种…...

springboot笔记示例六:fastjson2集成

springboot笔记示例六:fastjson2集成 本文md下载 https://download.csdn.net/download/a254939392/89491102本文md文档下载地址 #springboot json官方说明 https://docs.spring.io/spring-boot/docs/2.1.6.RELEASE/reference/html/boot-features-json.htmlsprin…...

VLOOKUP函数在表格的简单运用-两个表匹配

1.什么是VLOOKUP? VLOOKUP是Excel中的一个内置函数,主要用于在区域或表格的首列查找指定的值,并返回该行中其他列的值。它特别适用于跨表格数据匹配 2.函数运用 2.1.这边两个表取名a表和b表,做为我们的实例表。 表格a包含&…...

http.cookiejar.LoadError: Cookies file must be Netscape formatted,not JSON.解决方案

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…...

逻辑操作符

目录 && --- 逻辑与操作符 || --- 逻辑或操作符 && --- 逻辑与操作符 逻辑与操作符有并且的意思,一般用于判断语句中 逻辑与操作符运行规则是都要为真,才会继续执行或计算 360笔试题: 有关前置(--),后置(-…...

Java调用第三方接口的秘籍:技巧、案例与最佳实践

Java调用第三方接口的秘籍:技巧、案例与最佳实践 在Java开发中,调用第三方接口是一项常见的任务。无论是与外部系统交互、集成其他服务,还是调用远程API获取数据,掌握有效的第三方接口调用技巧都是至关重要的。本文将深入剖析Jav…...

【机器学习】机器学习重要方法——深度学习:理论、算法与实践

文章目录 引言第一章 深度学习的基本概念1.1 什么是深度学习1.2 深度学习的历史发展1.3 深度学习的关键组成部分 第二章 深度学习的核心算法2.1 反向传播算法2.2 卷积神经网络(CNN)2.3 循环神经网络(RNN) 第三章 深度学习的应用实…...

计网之IP

IP IP基本认识 不使用NAT时,源IP地址和目的IP地址不变,只要源MAC和目的MAC地址在变化 IP地址 D类是组播地址,E类是保留地址 无分类地址CIDR 解决直接分类的B类65536太多,C类256太少a.b.c.d/x的前x位属于网路号,剩…...

mybatis延迟加载

mybatis延迟加载 1、延迟加载概述 应用场景 ​ 如果查询订单并且关联查询用户信息。如果先查询订单信息即可满足要求,当我们需要查询用户信息时再查询用户信息。把对用户信息的按需去查询就是延迟加载。 延迟加载的好处 ​ 先从单表查询、需要时再从关联表去关联查…...

危险!属性拷贝工具的坑!

1. 背景​ 之前在专栏中讲过“不推荐使用属性拷贝工具”,推荐直接定义转换类和方法使用 IDEA 插件自动填充 get / set 函数。 不推荐的主要理由是: 有些属性拷贝工具性能有点差有些属性拷贝工具有“BUG”使用属性拷贝工具容易存在一些隐患&#xff08…...

qt实现打开pdf(阅读器)功能用什么库比较合适

关于这个问题,网上搜一下,可以看到非常多的相关博客和例子,可以先看看这个总结性的博客(https://zhuanlan.zhihu.com/p/480973072) 该博客讲得比较清楚了,这里我再补充一下吧(qt官方也给出了一些…...

在node.js环境中使用web服务器http-server运行html静态文件

http-server http-server是一个超轻量级web服务器,它可以将任何一个文件夹当作服务器的目录供自己使用。 当我们想要在服务器运行一些代码,但是又不会配置服务器的时候,就可以使用http-server就可以搞定了。 使用方法 因为http-server需要…...

前端学习篇一(HTML)

Introduction ##文章内容:使用HBuilder制作一个简单的HTML5网页以此达到学习HTML5 的目的 ##编写内容:1.HTML实现平台 2.HTML简介 3.HTML语言解析 ##编写人:贾雯爽 ##最后更新时间:2024/07/01 Overview Details 一、HTML简介…...

VUE笔记

框架: 框架结构,把很多基础功能已经实现(封装了)。 框架:在基础语言之上,对各种基础功能进行封装,方便开发者,提高开发效率。 举例:操作页面 现在:点击按…...

Datawhale机器学习day-1

赛题 在当今科技日新月异的时代,人工智能(AI)技术正以前所未有的深度和广度渗透到科研领域,特别是在化学及药物研发中展现出了巨大潜力。精准预测分子性质有助于高效筛选出具有优异性能的候选药物。以PROTACs为例,它是…...

业务模型扩展字段存储

构建业务模型时,通常模型会设置扩展信息,存储上一般使用JSON格式存储到db中。JSON虽然有较好的扩展性,但并没有结构化存储的类型和非空等约束,且强依赖代码中写入/读取时进行序列化/反序列化操作, 当扩展信息结构简单且…...

挑战杯推荐项目

“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 ​ - 个性化梦境…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...

HTML 语义化

目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案&#xff1a; 语义化标签&#xff1a; <header>&#xff1a;页头<nav>&#xff1a;导航<main>&#xff1a;主要内容<article>&#x…...

Keil 中设置 STM32 Flash 和 RAM 地址详解

文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文全面剖析RNN核心原理&#xff0c;深入讲解梯度消失/爆炸问题&#xff0c;并通过LSTM/GRU结构实现解决方案&#xff0c;提供时间序列预测和文本生成…...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会&#xff0c;玩音乐的本质就是玩电网。火电声音偏暖&#xff0c;水电偏冷&#xff0c;风电偏空旷。至于太阳能发的电&#xff0c;则略显朦胧和单薄。 不知你是否有感觉&#xff0c;近两年家里的音响声音越来越冷&#xff0c;听起来越来越单薄&#xff1f; —…...

动态 Web 开发技术入门篇

一、HTTP 协议核心 1.1 HTTP 基础 协议全称 &#xff1a;HyperText Transfer Protocol&#xff08;超文本传输协议&#xff09; 默认端口 &#xff1a;HTTP 使用 80 端口&#xff0c;HTTPS 使用 443 端口。 请求方法 &#xff1a; GET &#xff1a;用于获取资源&#xff0c;…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

PostgreSQL——环境搭建

一、Linux # 安装 PostgreSQL 15 仓库 sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm# 安装之前先确认是否已经存在PostgreSQL rpm -qa | grep postgres# 如果存在&#xff0…...