java:aocache的单实例缓存(一)
上一篇博客《java:aocache:基于aspectJ实现的方法缓存工具》介绍了aocache的基本使用,
介绍@AoCacheable注解时说过,@AoCacheable可以定义在构造方法上,定义在构造方法,该构建方法就成了单实例模式。
也就是说,只要构建方法参数相同,new 返回的实例都是同一个,示例如下:
@Testpublic void test7Constructor() {try {Date d = new Date();TestUser user = new TestUser("jerry",0,d);log("user:{}",user);for(int i=0;i<5;++i) {TestUser o = new TestUser("jerry",0,d);log("u{}:{}",i,o);/** 每次 new 返回的都是同一个实例 */assertTrue(o == user);}} catch (Throwable e) {e.printStackTrace();fail(e.getMessage());}}private static class TestUser {String name;Integer age;Date birthdate;@AoCacheableTestUser() {this(null, null, null);}@AoCacheableprotected TestUser(String name, Integer age, Date birthdate) {this.name = name;this.age = age;this.birthdate = birthdate;}}
注意 :
@AoCacheable定义在私有(private)构造方法上无效,因为基于AspectJ的工作原理,它不能拦截私有构造方法。- 对于是否将
@AoCacheable定义在构造方法上要认真考虑是否适合你的使用场景,因为一旦定义了将@AoCacheable注解定义在构造方法上,该方法new操作就不能创建新实例。
所以@AoCacheable定义在构造方法的使用方式是有限制的。因为就无法再创建新实例,如果又希望保持构造方法创建新实例,又能得到单实例缓存。建议不要在构造方法上定义@AcCacheable注解注解,而是定义一个有@AcCacheable注解的静态方法用于获取单实例,示例如下:
protected TestUser(String name, Integer age, Date birthdate) {this.name = name;this.age = age;this.birthdate = birthdate;}@AcCacheablepublic static TestUser getSingleton(String name, Integer age, Date birthdate){new TestUser(name,age,birthdate);}
项目仓库
访问码云仓库获取完整代码及说明:
aocache: aocache(Aspect Oriented Cache)是一个基于aspectJ实现的方法缓存工具。 (gitee.com)
相关文章:
java:aocache的单实例缓存(一)
上一篇博客《java:aocache:基于aspectJ实现的方法缓存工具》介绍了aocache的基本使用, 介绍AoCacheable注解时说过,AoCacheable可以定义在构造方法上,定义在构造方法,该构建方法就成了单实例模式。 也就是说,只要构建…...
pcap包常见拆分方法
文章目录 Wireshark 拆分流量包SplitCap使用简介魔数报错示例结果 在进行流量分析时,经常需要分析pcap流量包。但是体积过大的流量包不容易直接分析,经常需要按照一定的规则把它拆分成小的数据包。 这里统一选择cic数据集里的Thursday-WorkingHours.pcap…...
C++中的类型转换操作符:static_cast reinterpret_cast const_cast dynamic_cast
目录 C语言中的类型转换 C中的类型转换 C中的类型转换操作符 static_cast reinterpret_cast const_cast volatile关键字 赋值兼容 dynamic_cast C语言中的类型转换 基本概念:赋值运算符左右两侧类型不同,或形参与实参类型不匹配…...
MySQL-SQL优化Explain命令以及参数详解
前言 在MySQL优化的众多手段中,EXPLAIN命令扮演着至关重要的角色。它是数据库管理员和开发者手中的利器,用于分析SQL查询的执行计划。通过执行EXPLAIN,MySQL会提供一份详细的查询执行计划报告,这份报告揭示了查询将如何执行&…...
别只会重启了!进来告诉你AP无法上线怎么办
号主:老杨丨11年资深网络工程师,更多网工提升干货,请关注公众号:网络工程师俱乐部 你们好,我的网工朋友。 作为网工,咱们都知道无线网络的重要性,尤其是对于企业网络来说,无线接入点…...
数据恢复篇:如何在 Android 手机上恢复未保存/删除的 Word 文档
在 Android 手机上访问 Word 文档通常很简单,但是当这些重要文件被删除或未保存时会发生什么?这种情况虽然令人痛苦,但并非毫无希望。到 2024 年,有几种强大的方法来处理此类数据丢失。本指南重点介绍如何在Android手机上恢复已删…...
Python | Leetcode Python题解之第208题实现Trie(前缀树)
题目: 题解: class Trie:def __init__(self):self.children [None] * 26self.isEnd Falsedef searchPrefix(self, prefix: str) -> "Trie":node selffor ch in prefix:ch ord(ch) - ord("a")if not node.children[ch]:retur…...
Ethernet是以太网通讯
...
咖啡消费旺季到来 为何想转让的库迪联营商却越来越多
文 | 智能相对论 作者 | 霖霖 去年还在朝“三年万店”计划狂奔的库迪,今年已出现明显“失速”。 早在今年2月,库迪就官宣其门店数已超过7000家,如今4个多月过去,据极海品牌监测数据显示,截至6月27日,其总…...
神经网络原理
神经网络原理是一种模拟人脑的机器学习技术,通过大量的神经元和层次化的连接进行信息处理和学习。 图1 神经元 神经网络由许多简单的计算单元或“神经元”组成,这些神经元通过连接传递信息。每个连接都有一个权重,用于调整传递的信号强度。这…...
安卓应用开发学习:获取经纬度及地理位置描述信息
前段时间,我在学习鸿蒙应用开发的过程中,在鸿蒙系统的手机上实现了获取经纬度及地理位置描述信息(鸿蒙应用开发学习:手机位置信息进阶,从经纬度数据获取地理位置描述信息)。反而学习时间更长的安卓应用开发…...
各类排序方法 手撕快排 回顾经典快排 优化版快排
快排的主要思想是分而治之 第一步,确定分界点,a 第二步,调整区间,利用分界点a,把小于分界点a的数放在左边,大于的放在右边,相等的放在哪都可以 第三步,递归处理左右两段 实现(暴…...
独一无二的设计模式——单例模式(Java实现)
1. 引言 亲爱的读者们,欢迎来到我们的设计模式专题,今天的讲解的设计模式,还是单例模式哦!上次讲解的单例模式是基于Python实现(独一无二的设计模式——单例模式(python实现))的&am…...
使用MoA(Mixture of Agents)混合智能体技术,结合多个开源大语言模型如Llama3、phi-3和Mistral,实现一个强大的AI智能体
1.简介 论文简介: 论文提出了一种称为混合智能体(Mixture-of-Agents,MoA)的方法,利用多个大语言模型(LLM)的集体智慧来提高自然语言理解和生成任务的性能。 MoA采用了分层结构,每一层包含多个LLM智能体。每个智能体都将前一层所有智能体的输出作为辅助信息来生成自己的回答。通…...
前端面试题_Css
一、说一下Css的盒子模型? HTML中所有元素都可以看成是一个盒子 盒子的组成:content、padding、border、margin 盒子的类型: 标准盒模型:marginborderpaddingcontent -- box-sizing:content-box(默认&a…...
AI在线免费视频工具3:声音生视频
1、声音生视频 Noisee:通过声音生成对应视频,可以增加prompt指定生成内容相关视频 https://noisee.ai/create...
final、const、readonly关键字在不同语言中代表着什么
一、Java 1.被final修饰的类不能被继承。 2.被final修饰的方法不能被重写。 被 final 修饰的类中所有的成员方法都会隐式的定义为 final 方法。 若父类中 final 方法的访问权限为 private ,则子类中不能直接继承该方法。此时可以在子类中定义相同方法名的函数&…...
HarmonyOS ArkUi Tabs+TabContent+List实现tab吸顶功能
Demo效果 Entry Component struct StickyNestedScroll {State message: string Hello WorldState arr: number[] []scroller new Scroller()StyleslistCard() {.backgroundColor(Color.White).height(72).width("100%").borderRadius(12)}build() {Scroll(this.sc…...
Hugging Face Accelerate 两个后端的故事:FSDP 与 DeepSpeed
社区中有两个流行的零冗余优化器 (Zero Redundancy Optimizer,ZeRO)算法实现,一个来自DeepSpeed,另一个来自PyTorch。Hugging FaceAccelerate对这两者都进行了集成并通过接口暴露出来,以供最终用户在训练/微调模型时自主选择其中之…...
TextField是用于在用户界面中输入文本的控件。它广泛应用于表单、搜索框、评论区等需要用户输入文字的场景
TextField是用于在用户界面中输入文本的控件。它广泛应用于表单、搜索框、评论区等需要用户输入文字的场景。以下是对TextField的详细解释,涵盖其各个方面的功能和属性。 基本属性 text 描述:TextField中当前显示的文本。用法:text: "示…...
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...
调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...
MVC 数据库
MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案
这个问题我看其他博主也写了,要么要会员、要么写的乱七八糟。这里我整理一下,把问题说清楚并且给出代码,拿去用就行,照着葫芦画瓢。 问题 在继承QWebEngineView后,重写mousePressEvent或event函数无法捕获鼠标按下事…...
论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing
Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...
深入浅出Diffusion模型:从原理到实践的全方位教程
I. 引言:生成式AI的黎明 – Diffusion模型是什么? 近年来,生成式人工智能(Generative AI)领域取得了爆炸性的进展,模型能够根据简单的文本提示创作出逼真的图像、连贯的文本,乃至更多令人惊叹的…...
