当前位置: 首页 > news >正文

使用雪花算法(Snowflake Algorithm)在Python中生成唯一ID

使用雪花算法Snowflake Algorithm在Python中生成唯一ID

  • 使用雪花算法(Snowflake Algorithm)在Python中生成唯一ID
    • 雪花算法简介
    • Python实现
    • 代码解析
    • 使用示例
    • 优势
    • 注意事项
    • 适用场景
    • 结论

使用雪花算法(Snowflake Algorithm)在Python中生成唯一ID

在分布式系统中生成唯一ID是一个常见的需求。Twitter的雪花算法(Snowflake Algorithm)是一种优秀的解决方案,它可以生成64位的唯一ID,包含时间戳、工作机器ID和序列号。今天,我们将探讨如何在Python中实现雪花算法。

雪花算法简介

雪花算法生成的ID结构如下:

  • 1位符号位(始终为0)
  • 41位时间戳(毫秒级)
  • 5位数据中心ID
  • 5位工作机器ID
  • 12位序列号

这种结构允许在同一毫秒内生成4096个唯一ID,并支持多个数据中心和工作机器。

Python实现

import time
import threadingclass SnowflakeGenerator:def __init__(self, datacenter_id, worker_id):self.datacenter_id = datacenter_idself.worker_id = worker_idself.sequence = 0self.last_timestamp = -1# Bit lengths for different partsself.datacenter_id_bits = 5self.worker_id_bits = 5self.sequence_bits = 12# Maximum valuesself.max_datacenter_id = -1 ^ (-1 << self.datacenter_id_bits)self.max_worker_id = -1 ^ (-1 << self.worker_id_bits)self.max_sequence = -1 ^ (-1 << self.sequence_bits)# Shift amountsself.worker_id_shift = self.sequence_bitsself.datacenter_id_shift = self.sequence_bits + self.worker_id_bitsself.timestamp_shift = self.sequence_bits + self.worker_id_bits + self.datacenter_id_bitsself.lock = threading.Lock()def _current_milliseconds(self):return int(time.time() * 1000)def _til_next_millis(self, last_timestamp):timestamp = self._current_milliseconds()while timestamp <= last_timestamp:timestamp = self._current_milliseconds()return timestampdef generate_id(self):with self.lock:timestamp = self._current_milliseconds()if timestamp < self.last_timestamp:raise ValueError("Clock moved backwards. Refusing to generate id.")if timestamp == self.last_timestamp:self.sequence = (self.sequence + 1) & self.max_sequenceif self.sequence == 0:timestamp = self._til_next_millis(self.last_timestamp)else:self.sequence = 0self.last_timestamp = timestampreturn ((timestamp - 1288834974657) << self.timestamp_shift) | \(self.datacenter_id << self.datacenter_id_shift) | \(self.worker_id << self.worker_id_shift) | \self.sequencedef generate_unique_id(prefix: str, datacenter_id: int, worker_id: int) -> str:generator = SnowflakeGenerator(datacenter_id, worker_id)snowflake_id = generator.generate_id()return f"{prefix}{snowflake_id}"

代码解析

  1. SnowflakeGenerator类

    • 初始化方法设置数据中心ID和工作机器ID,并定义各部分的位长度和最大值。
    • _current_milliseconds()方法获取当前时间戳(毫秒级)。
    • _til_next_millis()方法等待直到下一毫秒。
    • generate_id()方法是核心,它生成唯一的雪花ID。
  2. generate_id()方法

    • 使用锁确保线程安全。
    • 获取当前时间戳。
    • 处理时钟回拨问题(抛出异常)。
    • 处理同一毫秒内的序列号。
    • 组合各部分生成最终的ID。
  3. generate_unique_id()函数

    • 创建SnowflakeGenerator实例。
    • 生成雪花ID并添加前缀。

使用示例

# 创建一个生成器,指定数据中心ID和工作机器ID
datacenter_id = 1
worker_id = 1# 生成用户ID
user_id = generate_unique_id("USER_", datacenter_id, worker_id)
print(f"生成的用户ID: {user_id}")# 生成订单ID
order_id = generate_unique_id("ORDER_", datacenter_id, worker_id)
print(f"生成的订单ID: {order_id}")# 生成多个产品ID
for i in range(5):product_id = generate_unique_id("PROD_", datacenter_id, worker_id)print(f"产品 {i+1} ID: {product_id}")

输出可能如下:

生成的用户ID: USER_6791951648483729408
生成的订单ID: ORDER_6791951648483729409
产品 1 ID: PROD_6791951648483729410
产品 2 ID: PROD_6791951648483729411
产品 3 ID: PROD_6791951648483729412
产品 4 ID: PROD_6791951648483729413
产品 5 ID: PROD_6791951648483729414

优势

  1. 高性能:雪花算法可以快速生成ID,不需要网络请求或数据库操作。
  2. 唯一性:在正确配置的情况下,可以保证全局唯一性。
  3. 有序性:生成的ID大致按时间顺序递增,有利于数据库索引。
  4. 包含信息:ID中包含时间戳、数据中心和工作机器信息,便于追踪和调试。
  5. 可定制:可以根据需求调整各部分的位数。

注意事项

  1. 时钟同步:雪花算法依赖系统时钟,在分布式系统中需要确保时钟同步。
  2. 时钟回拨:代码中包含了对时钟回拨的处理,但在实际应用中可能需要更复杂的处理逻辑。
  3. 数据中心和工作机器ID:需要确保这些ID在整个分布式系统中是唯一的。
  4. 64位限制:如果使用的语言或系统不支持64位整数,可能需要调整算法。

适用场景

雪花算法特别适用于以下场景:

  • 分布式系统中需要生成全局唯一ID
  • 需要按时间顺序对数据进行排序
  • 高并发系统,需要快速生成大量唯一ID
  • 微服务架构,每个服务需要独立生成ID

结论

雪花算法提供了一种优雅的方式来在分布式系统中生成唯一ID。这个Python实现简单易用,同时保持了雪花算法的核心优势。在实际应用中,您可能需要根据具体需求进行进一步的调整和优化,例如处理时钟回拨的更复杂情况,或者调整各部分的位数分配。

通过使用这种方法,您可以在Python项目中轻松实现高效、唯一且信息丰富的ID生成。无论是用于用户ID、订单编号还是其他需要唯一标识符的场景,雪花算法都能提供可靠的解决方案。

相关文章:

使用雪花算法(Snowflake Algorithm)在Python中生成唯一ID

使用雪花算法Snowflake Algorithm在Python中生成唯一ID 使用雪花算法&#xff08;Snowflake Algorithm&#xff09;在Python中生成唯一ID雪花算法简介Python实现代码解析使用示例优势注意事项适用场景结论 使用雪花算法&#xff08;Snowflake Algorithm&#xff09;在Python中生…...

Docker期末复习

云计算服务类型有: IaaS 基础设施及服务 PaaS 平台及服务 SaaS 软件及服务 服务类型辨析示例: IaaS 服务提供的云服务器软件到操作系统,具体应用软件自己安装,如腾讯云上申请的云服务器等;SaaS提供的服务就是具体的软件,例如微软的Office套件等。 云计算部署模式有: 私有云…...

DP:子数组问题

文章目录 引言子数组问题介绍动态规划的基本概念具体问题的解决方法动态规划解法&#xff1a;关于子数组问题的几个题1.最大子数组和2.环形子数组的最大和3.乘积最大子数组4.乘积为正数的最长子数组长度5.等差数列划分 总结 引言 介绍动态规划&#xff08;DP&#xff09;在解决…...

[Day 20] 區塊鏈與人工智能的聯動應用:理論、技術與實踐

AI在醫療領域的創新應用 隨著科技的快速發展&#xff0c;人工智能&#xff08;AI&#xff09;在各行各業的應用越來越廣泛&#xff0c;醫療領域也不例外。AI技術在醫療中的應用不僅提高了診斷的準確性&#xff0c;還改善了病患的治療效果&#xff0c;優化了醫療資源的配置。本…...

Handling `nil` Values in `NSDictionary` in Objective-C

Handling nil Values in NSDictionary in Objective-C When working with Objective-C, particularly when dealing with data returned from a server, it’s crucial (至关重要的) to handle nil values appropriately (适当地) to prevent unexpected crashes. Here, we ex…...

【深入浅出 】——【Python 字典】——【详解】

目录 1. 什么是 Python 字典&#xff1f; 1.1 字典的基本概念 1.2 字典的用途 1.3 字典的优势 2. 字典的基本特点 2.1 键的唯一性 2.2 可变性 2.3 无序性 3. 如何创建字典&#xff1f; 3.1 使用 {} 符号 3.2 使用 dict() 工厂方法 3.3 使用 fromkeys() 方法 4. 字…...

开发RpcProvider的发布服务(NotifyService)

1.发布服务过程 目前完成了mprpc框架项目中的以上的功能。 作为rpcprovider的使用者&#xff0c;也就是rpc方法的发布方 main函数如下&#xff1a; 首先我们init调用框架的init&#xff0c;然后启动一个provider&#xff0c;然后向provider上注册服务对象方法&#xff0c;即us…...

Suno: AI音乐创作的新时代

名人说:一点浩然气,千里快哉风。 ——苏轼 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 目录 一、什么是Suno?1、Suno2、应用场景二、如何使用Suno制作音乐?步骤1:注册并登录Suno平台步骤2:创建音乐项目步骤3:生成音乐片段三、Suno的影响很高兴你打开了…...

六西格玛项目实战:数据驱动,手机PCM率直线下降

在当前智能手机市场日益竞争激烈的背景下&#xff0c;消费者对手机质量的要求达到了前所未有的高度。PCM&#xff08;可能指生产过程中的某种不良率或缺陷率&#xff09;作为影响手机质量的关键因素&#xff0c;直接关联到消费者满意度和品牌形象。为了应对这一挑战&#xff0c…...

数据结构递归(01)汉诺塔经典问题

说明&#xff1a;使用递归时&#xff0c;必须要遵守两个限制条件&#xff1a; 递归存在限制条件&#xff0c;满⾜这个限制条件时&#xff0c;递归不再继续&#xff1b; 每次递归调⽤之后越来越接近这个限制条件&#xff1b; 1 汉诺塔&#xff08;Hanoi Tower&#xff09;经典…...

计算机专业课面试常见问题-计算机网络篇

目录 1. 计算机网络分为哪 5 层&#xff1f; 2. TCP 协议简述&#xff1f; 3. TCP 和 UDP 的区别&#xff1f;->不同的应用场景&#xff1f; 4. 从浏览器输入网址到显示页…...

HarmonyOS ArkUi ArkWeb加载不出网页问题踩坑

使用 使用还是比较简单的&#xff0c;直接贴代码了 别忘了配置网络权限 Entry Component struct WebPage {State isAttachController: boolean falseState url: string State title: string Prop controller: web_webview.WebviewController new web_webview.WebviewCont…...

微信换手机号了怎么绑定新手机号?

微信换手机号了怎么绑定新手机号&#xff1f; 1、在手机上找到并打开微信&#xff1b; 2、打开微信后&#xff0c;点击底部我的&#xff0c;并进入微信设置&#xff1b; 3、在微信设置账号与安全内&#xff0c;找到手机号并点击进入&#xff1b; 4、选择更换手机号&#xff0c…...

64.WEB渗透测试-信息收集- WAF、框架组件识别(4)

免责声明&#xff1a;内容仅供学习参考&#xff0c;请合法利用知识&#xff0c;禁止进行违法犯罪活动&#xff01; 内容参考于&#xff1a; 易锦网校会员专享课 上一个内容&#xff1a;63.WEB渗透测试-信息收集- WAF、框架组件识别&#xff08;3&#xff09;-CSDN博客 我们在…...

java.lang.LinkageError: 链接错误的正确解决方法,亲测有效,嘿嘿,有效

文章目录 问题分析报错原因解决思路解决方法&#xff08;含代码示例&#xff09;1. 检查类加载器2. 避免在运行时修改类定义3. 更新或修复 JVM4. 检查应用程序的依赖使用 Maven 检查依赖项使用 Gradle 检查依赖项 java.lang.LinkageError 是 Java 虚拟机在尝试链接类定义时发生…...

python最基础

基本的类 python最基础、最常用的类主要有int整形&#xff0c;float浮点型&#xff0c;str字符串&#xff0c;list列表&#xff0c;dict字典&#xff0c;set集合&#xff0c;tuple元组等等。int整形、float浮点型一般用于给变量赋值&#xff0c;tuple元组属于不可变对象&#…...

Python学习路线图(2024最新版)

这是我最开始学Python时的一套学习路线&#xff0c;从入门到上手。&#xff08;不敢说精通&#xff0c;哈哈~&#xff09; 一、Python基础知识、变量、数据类型 二、Python条件结构、循环结构 三、Python函数 四、字符串 五、列表与元组 六、字典与集合 最后再送给大家一套免费…...

66、基于长短期记忆 (LSTM) 网络对序列数据进行分类

1、基于长短期记忆 (LSTM) 网络对序列数据进行分类的原理及流程 基于长短期记忆&#xff08;LSTM&#xff09;网络对序列数据进行分类是一种常见的深度学习任务&#xff0c;适用于处理具有时间或序列关系的数据。下面是在Matlab中使用LSTM网络对序列数据进行分类的基本原理和流…...

RabbitMQ消息可靠性等机制详解(精细版三)

目录 七 RabbitMQ的其他操作 7.1 消息的可靠性(发送可靠) 7.1.1 confim机制(保证发送可靠) 7.1.2 Return机制(保证发送可靠) 7.1.3 编写配置文件 7.1.4 开启Confirm和Return 7.2 手动Ack(保证接收可靠) 7.2.1 添加配置文件 7.2.2 手动ack 7.3 避免消息重复消费 7.3.…...

88888

49615...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

在WSL2的Ubuntu镜像中安装Docker

Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包&#xff1a; for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会&#xff0c;玩音乐的本质就是玩电网。火电声音偏暖&#xff0c;水电偏冷&#xff0c;风电偏空旷。至于太阳能发的电&#xff0c;则略显朦胧和单薄。 不知你是否有感觉&#xff0c;近两年家里的音响声音越来越冷&#xff0c;听起来越来越单薄&#xff1f; —…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...

C# 表达式和运算符(求值顺序)

求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如&#xff0c;已知表达式3*52&#xff0c;依照子表达式的求值顺序&#xff0c;有两种可能的结果&#xff0c;如图9-3所示。 如果乘法先执行&#xff0c;结果是17。如果5…...

Kafka主题运维全指南:从基础配置到故障处理

#作者&#xff1a;张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1&#xff1a;主题删除失败。常见错误2&#xff1a;__consumer_offsets占用太多的磁盘。 主题日常管理 …...