当前位置: 首页 > news >正文

《每天5分钟用Flask搭建一个管理系统》 第6章:数据库集成

第6章:数据库集成

6.1 数据库的选择和配置

在Flask中集成数据库,首先需要选择一个数据库系统。常见的选择包括SQLite、MySQL、PostgreSQL等。选择后,需要配置数据库连接字符串。

示例代码:配置数据库

from flask import Flask
from flask_sqlalchemy import SQLAlchemyapp = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///site.db'  # 配置SQLite数据库
db = SQLAlchemy(app)
6.2 SQLAlchemy ORM简介

SQLAlchemy是一个流行的SQL工具包和对象关系映射(ORM)系统,可以用于Flask应用中。

示例代码:安装SQLAlchemy

pip install Flask-SQLAlchemy
6.3 数据模型的创建

在Flask中使用SQLAlchemy定义数据模型,这些模型将映射到数据库表。

示例代码:定义数据模型

class User(db.Model):id = db.Column(db.Integer, primary_key=True)username = db.Column(db.String(20), unique=True, nullable=False)email = db.Column(db.String(120), unique=True, nullable=False)def __repr__(self):return f'<User {self.username}>'
6.4 数据库迁移和版本控制

数据库迁移是修改数据库结构(如添加、删除表或字段)的过程。Flask-Migrate是一个扩展,用于处理数据库迁移。

示例代码:安装Flask-Migrate

pip install Flask-Migrate

示例代码:初始化Flask-Migrate

from flask_migrate import Migratemigrate = Migrate(app, db)

示例代码:创建和应用迁移

flask db init  # 初始化迁移目录
flask db migrate -m "Initial migration."  # 生成迁移脚本
flask db upgrade  # 应用迁移到数据库
6.5 操作数据库

使用SQLAlchemy ORM,您可以轻松地添加、查询、更新和删除数据库记录。

示例代码:添加新用户

new_user = User(username='JohnDoe', email='john@example.com')
db.session.add(new_user)
db.session.commit()

示例代码:查询用户

user = User.query.filter_by(username='JohnDoe').first()
6.6 总结

本章介绍了如何在Flask应用中集成数据库,包括选择数据库、配置SQLAlchemy、创建数据模型、以及使用Flask-Migrate进行数据库迁移和版本控制。

相关文章:

《每天5分钟用Flask搭建一个管理系统》 第6章:数据库集成

第6章&#xff1a;数据库集成 6.1 数据库的选择和配置 在Flask中集成数据库&#xff0c;首先需要选择一个数据库系统。常见的选择包括SQLite、MySQL、PostgreSQL等。选择后&#xff0c;需要配置数据库连接字符串。 示例代码&#xff1a;配置数据库 from flask import Flask…...

pandas读取和处理Excel文件的基础应用1

Pandas如何读取Excel文件并处理数据 引言&#xff1a; Pandas是一种常用的数据处理和分析工具&#xff0c;它提供了丰富的函数和方法&#xff0c;方便用户对数据进行清洗、转换和分析。在实际工作中&#xff0c;我们经常需要处理Excel格式的数据文件&#xff0c;本文将介绍如何…...

electron vite react 创建一个项目

要使用 Electron、Vite 和 React 创建一个项目,你可以按照以下步骤操作: 1. 安装 Node.js 和 npm 首先,确保你的计算机上安装了 Node.js 和 npm(Node Package Manager)。你可以从 Node.js 官网 下载并安装。 2. 初始化一个新的项目 在你的工作目录下,创建一个新的文件…...

鸿蒙使用 @Builder扩展出来的布局数据更新没法更新UI

由于业务的复杂&#xff0c;所以我们把相关UI抽离出来。但是数据变化了&#xff0c;没法更新UI Builder MyGridLayout() { } 通过日志打印发现数据的确是更新了&#xff0c;但是UI就没没办法&#xff0c;如何解决呢 Entry Component struct Page35 {// State sArray: bool…...

湖南省教育网络协会莅临麒麟信安调研教育网络数字化建设及教育信创发展情况

6月28日下午&#xff0c;湖南省教育网络协会理事长张智勇、秘书长刘志勇、副理事长黄旭、胡洪波、周中伟等协会相关负责人一行莅临麒麟信安&#xff0c;就湖南省教育网络数字化建设、教育信创工作等主题进行深入调研。麒麟信安副总裁王攀热情接待。 协会成员一行来到麒麟信安展…...

论文阅读_优化RAG系统的检索

英文名称: The Power of Noise: Redefining Retrieval for RAG Systems 中文名称: 噪声的力量&#xff1a;重新定义RAG系统的检索 链接: https://arxiv.org/pdf/2401.14887.pdf 作者: Florin Cuconasu, Giovanni Trappolini, Federico Siciliano, Simone Filice, Cesare Campag…...

STC8/32 软硬件I2C通讯方式扫描I2C设备地址

STC8/32 软硬件I2C通讯方式扫描I2C设备地址 📄主要用于检测挂载在I2C总线上的设备。在驱动I2C设备之前,如果能扫描到该设备,说明通讯设备可以连接的上,在提前未知I2C地址的情况下,可以方便后面的驱动代码的完善。 🔬扫描测试效果:(测试mpu6050以及ssd1306 i2c oled )…...

Linux——数据流和重定向,制作镜像

1. 数据流 标准输入&#xff08; standard input &#xff0c;简称 stdin &#xff09;&#xff1a;默认情况下&#xff0c;标准输入指从键盘获取的输入 标准输出&#xff08; standard output &#xff0c;简称 stdout &#xff09;&#xff1a;默认情况下&#xff0c;命令…...

Windows 11的市场份额越来越大了,推荐你升级!

7月1日&#xff0c;系统之家发布最新数据&#xff0c;显示Windows 11操作系统的市场份额正在稳步上升。自2021年10月Windows 11发布以来&#xff0c;Windows 10一直占据着市场主导地位&#xff0c;当时其市场份额高达81.44%。然而&#xff0c;随着时间的推移&#xff0c;Window…...

微服务架构中的调试难题与分布式事务解决方案

微服务架构作为现代软件开发的一种主要趋势&#xff0c;因其灵活性、高可维护性和易于扩展的特点&#xff0c;得到了广泛的应用。然而&#xff0c;在享受微服务架构带来的诸多优点的同时&#xff0c;开发者也面临着一些新的挑战。调试的复杂性和分布式事务的处理是其中两个较为…...

银行家算法-操作系统中避免死锁的最著名算法

背景 有很多文章都会介绍银行家算法。在百度和CSDN上搜一搜能搜出很多来。很多同学会觉得这个算法很深奥&#xff0c;有些文章写的又很复杂&#xff0c;其实真的很简单。这里简单记录一下基本原理&#xff0c;然后大家再配合其他文章看&#xff0c;就能加深理解。 算法原理 …...

PCL 基于点云RGB颜色的区域生长算法

RGB颜色的区域生长算法 一、概述1.1 算法定义1.2 算法特点1.3 算法实现二、代码示例三、运行结果🙋 结果预览 一、概述 1.1 算法定义 点云RGB区域生长算法: 是一个基于RGB颜色信息的区域生长算法,用于点云分割。该算法利用了点云中相邻点之间的颜色相似性来将点云分割成…...

cube-studio开源一站式机器学习平台,在线ide,jupyter,vscode,matlab,rstudio,ssh远程连接,tensorboard

全栈工程师开发手册 &#xff08;作者&#xff1a;栾鹏&#xff09; 一站式云原生机器学习平台 前言 开源地址&#xff1a;https://github.com/tencentmusic/cube-studio cube studio 腾讯开源的国内最热门的一站式机器学习mlops/大模型训练平台&#xff0c;支持多租户&…...

1976 ssm 营地管理系统开发mysql数据库web结构java编程计算机网页源码Myeclipse项目

一、源码特点 ssm 营地管理系统是一套完善的信息系统&#xff0c;结合springMVC框架完成本系统&#xff0c;对理解JSP java编程开发语言有帮助系统采用SSM框架&#xff08;MVC模式开发&#xff09;&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开…...

技术派全局异常处理

前言 全局的异常处理是Java后端不可或缺的一部分&#xff0c;可以提高代码的健壮性和可维护性。 在我们的开发中&#xff0c;总是难免会碰到一些未经处理的异常&#xff0c;假如没有做全局异常处理&#xff0c;那么我们返回给用户的信息应该是不友好的&#xff0c;很抽象的&am…...

对于mysql 故障的定位和排查

故障表现 他的执行时间超过规定的限制&#xff08;比如1000ms&#xff09;CPU使用率高大量业务失败&#xff0c;数据连接异常执行sql越来越慢&#xff0c;失败越来越多 解决方案 定位 应急 故障恢复 定位 查询慢sql的日志查看mysql 的performance schena&#xff08;里面…...

什么是电航空插头插座连接器有什么作用

航空插头概述 定义与功能 航空插头&#xff0c;又称航空连接器&#xff0c;是一种专门用于航空领域的电连接器&#xff0c;因其最初在航空领域得到广泛应用而得名。航空插头的主要功能是实现电源或信号的连接&#xff0c;尤其适用于芯数较多、结构复杂的线束连接&#xff0c;…...

数据挖掘常见算法(分类算法)

K&#xff0d;近邻算法&#xff08;KNN&#xff09; K-近邻分类法的基本思想&#xff1a;通过计算每个训练数据到待分类元组Zu的距离&#xff0c;取和待分类元组距离最近的K个训练数据&#xff0c;K个数据中哪个类别的训练数据占多数&#xff0c;则待分类元组Zu就属于哪个类别…...

【深度学习】调整加/减模型用于体育运动评估

摘要 一种基于因果关系的创新模型&#xff0c;名为调整加/减模型&#xff0c;用于精准量化个人在团队运动中的贡献。该模型基于明确的因果逻辑&#xff0c;将个体运动员的价值定义为&#xff1a;在假设情景下&#xff0c;用一名价值为零的球员替换该球员后&#xff0c;预期比赛…...

重生之算法刷题之路之链表初探(三)

算法刷题之路之链表初探&#xff08;三&#xff09; 今天来学习的算法题是leecode2链表相加&#xff0c;是一道简单的入门题&#xff0c;但是原子在做的时候其实是有些抓耳挠腮&#xff0c;看了官解之后才恍然大悟&#xff01; 条件 项目解释 有题目可以知道&#xff0c;我们需…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes&#xff08;简称K8s&#xff09;中&#xff0c;Ingress是一个API对象&#xff0c;它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress&#xff0c;你可…...

《Playwright:微软的自动化测试工具详解》

Playwright 简介:声明内容来自网络&#xff0c;将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具&#xff0c;支持 Chrome、Firefox、Safari 等主流浏览器&#xff0c;提供多语言 API&#xff08;Python、JavaScript、Java、.NET&#xff09;。它的特点包括&a…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案&#xff0c;允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...

中医有效性探讨

文章目录 西医是如何发展到以生物化学为药理基础的现代医学&#xff1f;传统医学奠基期&#xff08;远古 - 17 世纪&#xff09;近代医学转型期&#xff08;17 世纪 - 19 世纪末&#xff09;​现代医学成熟期&#xff08;20世纪至今&#xff09; 中医的源远流长和一脉相承远古至…...

JS设计模式(4):观察者模式

JS设计模式(4):观察者模式 一、引入 在开发中&#xff0c;我们经常会遇到这样的场景&#xff1a;一个对象的状态变化需要自动通知其他对象&#xff0c;比如&#xff1a; 电商平台中&#xff0c;商品库存变化时需要通知所有订阅该商品的用户&#xff1b;新闻网站中&#xff0…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing

Muffin 论文 现有方法 CRADLE 和 LEMON&#xff0c;依赖模型推理阶段输出进行差分测试&#xff0c;但在训练阶段是不可行的&#xff0c;因为训练阶段直到最后才有固定输出&#xff0c;中间过程是不断变化的。API 库覆盖低&#xff0c;因为各个 API 都是在各种具体场景下使用。…...

[拓扑优化] 1.概述

常见的拓扑优化方法有&#xff1a;均匀化法、变密度法、渐进结构优化法、水平集法、移动可变形组件法等。 常见的数值计算方法有&#xff1a;有限元法、有限差分法、边界元法、离散元法、无网格法、扩展有限元法、等几何分析等。 将上述数值计算方法与拓扑优化方法结合&#…...