机器学习/pytorch笔记:time2vec
1 概念部分
对于给定的标量时间概念 t,Time2Vec 的表示 t2v(t)是一个大小为 k+1的向量,定义如下:
- 其中,t2v(t)[i]是 t2v(t)的第 i 个元素,F是一个周期性激活函数,ω和 ϕ是可学习的参数。
- 以下是个人理解:
- t是时间序列中的一个时间点,而不是时间序列的数值。
- 具体来说,t 代表时间序列中的一个特定时刻,例如某一天、某一小时或某一秒等。Time2Vec 的目标是将每一个时间点 t 转换为一个具有特定特征的向量表示,以便更好地捕捉时间相关的特性和模式。
2 pytorch实现
2.1 函数t2v
def t2v(tau, f, out_features, w, b, w0, b0, arg=None):if arg:v1 = f(torch.matmul(tau, w) + b, arg)else:v1 = f(torch.matmul(tau, w) + b)v2 = torch.matmul(tau, w0) + b0return torch.cat([v1, v2], 1)
- t2v 负责将输入的时间 tau 通过两个不同的线性变换和激活函数转换成特征向量,并将这两个特征向量连接起来
- tau 是输入的时间张量。
- f 是激活函数(例如 torch.sin 或 torch.cos)。
- out_features 是输出特征的维度。
- w 和 b 是用于第一个变换的权重和偏置。
- w0 和 b0 是用于第二个变换的权重和偏置。
2.2 SineActivation
class SineActivation(nn.Module):def __init__(self, in_features, out_features):super(SineActivation, self).__init__()self.out_features = out_featuresself.w0 = nn.parameter.Parameter(torch.randn(in_features, 1))self.b0 = nn.parameter.Parameter(torch.randn(in_features, 1))self.w = nn.parameter.Parameter(torch.randn(in_features, out_features - 1))self.b = nn.parameter.Parameter(torch.randn(in_features, out_features - 1))self.f = torch.sindef forward(self, tau):return t2v(tau, self.f, self.out_features, self.w, self.b, self.w0, self.b0)
- 实现了使用正弦函数作为激活函数的时间嵌入
- cos同理,把torch.sin换成torch.cos即可
- 输入特征的维度(in_features)取决于提供的时间特征的数量
- 如果你只有一个时间特征(例如,仅一天中的时间),那么输入特征的维度是 1。
- 如果你有两个时间特征(例如,一天中的时间和一周中的某一天),那么输入特征的维度是 2。
- 依此类推,输入特征的维度是你提供的时间特征的数量。
相关文章:

机器学习/pytorch笔记:time2vec
1 概念部分 对于给定的标量时间概念 t,Time2Vec 的表示 t2v(t)是一个大小为 k1的向量,定义如下: 其中,t2v(t)[i]是 t2v(t)的第 i 个元素,F是一个周期性激活函数,ω和 ϕ是可学习的参数。 以下是个人理解&am…...

降低开关电源噪声的设计总结
开关电源的特征就是产生强电磁噪声,若不加严格控制,将产生极大的干扰。下面介绍的技术有助于降低开关电源噪声,能用于高灵敏度的模拟电路。 电路和器件的选择 一个关键点是保持dv/dt和di/dt在较低水平,有许多电路通过减小dv/dt和…...

rust嵌入式开发2024
老的rust embedded book 其实过时了. 正确的姿势是embassy 入手. 先说下以前rust写嵌入怎么教学小白的. 第一步,从这里 svd2rust 工具,自己生成库第二部,有了这个库,相当于就有了pac外设访问文件,然后其实就可以搞起来了. 那么为啥不好搞了. 因为太乱了. 小白喜欢你告我咋弄…...

字符串
对应练习题:力扣平台 14. 最长公共前缀 class Solution { public:string longestCommonPrefix(vector<string>& strs) {string strs1strs[0];//初始前缀字符串for (int i 1; i < strs.size(); i) {while(strs[i].find(strs1)!0)//遍历找到共同最长前…...

mysql8 锁表与解锁
方法1不行,就按方法2来执行; (一) 解锁方法1 连接mysql ,直接执行UNLOCK TABLES,细节如下: – 查询是否锁表 SHOW OPEN TABLES WHERE in_use >0 ; – 查询进程 show processlist ; – 查询到相对应的进程…...

第2篇 区块链的历史和发展:从比特币到以太坊
想象一下,你住在一个小镇上,每个人都有一个大账本,记录着所有的交易。这个账本很神奇,每当有人买卖东西,大家都会在自己的账本上记一笔,确保每个人的账本都是一致的。这就是区块链的基本思想。而区块链的故…...

从理论到实践的指南:企业如何建立有效的EHS管理体系?
企业如何建立有效的EHS管理体系?对于任何企业,没有安全就谈不上稳定生产和经济效益,因此建立EHS管理体系是解决企业长期追求的建立安全管理长效机制的最有效手段。良好的体系运转,可以最大限度地减少事故发生。 这篇借着开头这个…...

内网和外网的区别及应用
内网和外网的区别及应用 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天我们来探讨一下计算机网络中的内网和外网,它们的区别以及在实际应用中的…...

电驱失效类型和风险分析,如何用精益思维提升电驱可靠性?
在电动车日益普及的今天,电驱系统作为电动车的“心脏”,其可靠性直接关系到整车的性能与用户体验。然而,电驱失效问题却一直困扰着电动车行业,如何提升电驱可靠性成为了业内关注的焦点。今天,深圳天行健精益管理咨询公…...

自动扫描范围在减少剂量多相CT肝脏成像中的应用:基于CNN和高斯模型| 文献速递-深度学习自动化疾病检查
Title 题目 Automatic scan range for dose-reduced multiphase CT imaging of theliver utilizing CNNs and Gaussian models 自动扫描范围在减少剂量多相CT肝脏成像中的应用:基于CNN和高斯模型 01 文献速递介绍 肝癌是全球癌症死亡的第四大原因,每…...

【机器学习】基于层次的聚类方法:理论与实践
🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 💫个人格言: "如无必要,勿增实体" 文章目录 基于层次的聚类方法:理论与实践引言1. 层次聚类基础1.1 概述1.2 距离…...

C# 验证PDF数字签名的有效性
数字签名作为PDF文档中的重要安全机制,不仅能够验证文件的来源,还能确保文件内容在传输过程中未被篡改。然而,如何正确验证PDF文件的数字签名,是确保文件完整性和可信度的关键。本文将详细介绍如何使用免费.NET控件通过C#验证PDF签…...

2小时动手学习扩散模型(pytorch版)【入门版】【代码讲解】
2小时动手学习扩散模型(pytorch版) 课程地址 2小时动手学习扩散模型(pytorch版) 课程目标 给零基础同学快速了解扩散模型的核心模块,有个整体框架的理解。知道扩散模型的改进和设计的核心模块。 课程特色…...

Centos7网络配置(设置固定ip)
文章目录 1进入虚拟机设置选中【网络适配器】选择【NAT模式】2 进入windows【控制面板\网络和 Internet\网络和共享中心\更改适配器设置】设置网络状态。3 设置VM的【虚拟网络编辑器】4 设置系统网卡5 设置虚拟机固定IP 刚安装完系统,有的人尤其没有勾选自动网络配置…...

英伟达被“压制”的25年
十九世纪中叶的美国西部,掀起了一场轰轰烈烈的淘金热,但最终赚到钱的,并不是拿命去赌的淘金者。一个名叫萨姆布瑞南的商人,通过向淘金者出售铲子,成了加州历史上第一位百万富翁。 每一次风口出现时,总有企…...

windows安装Gitblit还是Bonobo Git Server
Gitblit 和 Bonobo Git Server 都是用于托管Git仓库的工具,但它们是基于不同平台的不同软件。 Gitblit 是一个纯 Java 写的服务器,支持托管 Git,Mercurial 和 SVN 仓库。它需要 Java 运行环境,适合在 Windows、Linux 和 Mac 平台…...

仪器校准的概念与定义,计量校准是什么?
仪器校准的定义,在之前所颁布的《国际计量学词汇 基础和通用概念及相关术语》文件中,已经有了明确说明,而该文件做了修改以后,在后续新的定义中,仪器校准具体被分为两部分,第一步是将被计量仪器和计量校准的…...

Vue3+Pinia
1.单纯调接口(安装pinia及引入如下第一张图) 1.npm install pinia2.在main.js里引入即可import { createPinia } from piniaapp.use(createPinia()) 1.stores建立你文件的ts、内容如下:1-1 import { defineStore } from pinia1-2 import { findPageJobSet } from …...

label studio数据标注平台的自动化标注使用
(作者:陈玓玏) 开源项目,欢迎star哦,https://github.com/data-infra/cube-studio 做图文音项目过程中,我们通常会需要进行数据标注。label studio是一个比较好上手的标注平台,可以直接搜索…...

高并发场景下的热点key问题探析与应对策略
目录 一、问题描述 二、发现机制 三、解决策略分析 (一)解决策略一:多级缓存策略 客户端本地缓存 代理节点本地缓存 (二)解决策略二:多副本策略 (三)解决策略三:热点…...

学习一下C++中的枚举的定义
目录 普通枚举 强类型枚举 普通枚举 枚举类型在C中是通过关键字enum来定义的。下面是一个简单的例子: enum Color { RED, GREEN, BLUE }; 在这个例子中,我们定义了一个名为Color的枚举类型,它包含了三个枚举值:RED、GRE…...

开发一套java语言的智能导诊需要什么技术?java+ springboot+ mysql+ IDEA互联网智能3D导诊系统源码
开发一套java语言的智能导诊需要什么技术?java springboot mysql IDEA互联网智能3D导诊系统源码 医院导诊系统是一种基于互联网和3D人体的智能化服务系统,旨在为患者提供精准、便捷的医院就诊咨询服务。该系统整合了医院的各种医疗服务资;智慧…...

C++| STL之string
前言:最近在做LeetCode算法题,C字符串通常都是string作为输入,所以补充一下STL里面string。在介绍的具体使用的时候,会补充char字符串相关的进行对比。 string 创建大小和容量遍历字符串比较插入字符拼接字符串分配内存查找截取分…...

[数据集][目标检测]游泳者溺水检测数据集VOC+YOLO格式4599张2类别
数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):4599 标注数量(xml文件个数):4599 标注数量(txt文件个数):4599 标注…...

JAVA实现麦克风说话同声传译
一、能力与场景说明 同声传译,又称同步口译或同声翻译,是一种专业的口译形式,指的是在讲话者发言时,口译员几乎同时将讲话内容翻译成目标语言。这种翻译方式通常用于国际会议、高级别政治或商业会谈、研讨会和其他需要即时多语言…...

LabVIEW与PLC通讯方式及比较
LabVIEW与PLC之间的通讯方式多样,包括使用MODBUS协议、OPC(OLE for Process Control)、Ethernet/IP以及串口通讯等。这些通讯方式各有特点,选择合适的通讯方式可以提高系统的效率和稳定性。以下将详细介绍每种通讯方式的特点、优点…...

2024/6/30 英语每日一段
Years of economic and political turbulence have brought stagnation.“In a world where there is more risk and uncertainty, people become reluctant to voluntarily move jobs and find better jobs,” says Manning. At the same time, businesses have cut back on i…...

Postman接口测试工具的原理及应用详解(五)
本系列文章简介: 在当今软件开发的世界中,接口测试作为保证软件质量的重要一环,其重要性不言而喻。随着前后端分离开发模式的普及,接口测试已成为连接前后端开发的桥梁,确保前后端之间的数据交互准确无误。在这样的背景…...

208.贪心算法:买卖股票的最佳时机||(力扣)
代码解决 class Solution { public:int maxProfit(vector<int>& prices) {int result 0; // 初始化结果为0,表示初始利润为0// 从第二天开始遍历价格数组for (int i 1; i < prices.size(); i) {// 如果当天价格比前一天价格高,则将差价加…...

【论文阅读】伸缩密度比估计:Telescoping Density-Ratio Estimation
文章目录 一、文章概览(一)问题提出(二)文章工作 二、判别比估计和密度鸿沟问题三、伸缩密度比估计(一)核心思想(二)路标创建(三)桥梁构建(四&…...