当前位置: 首页 > news >正文

【力扣 - 每日一题】3115. 质数的最大距离(一次遍历、头尾遍历、空间换时间、埃式筛、欧拉筛、打表)Golang实现

原题链接

题目描述

给你一个整数数组 nums。
返回两个(不一定不同的)质数在 nums 中 下标 的 最大距离。

示例 1:

输入: nums = [4,2,9,5,3]
输出: 3
解释: nums[1]、nums[3] 和 nums[4] 是质数。因此答案是 |4 - 1| = 3。

示例 2:

输入: nums = [4,8,2,8]
输出: 0
解释: nums[2] 是质数。因为只有一个质数,所以答案是 |2 - 2| = 0。

提示:

1 < = n u m s . l e n g t h < = 3 ∗ 1 0 5 1 <= nums.length <= 3 * 10^5 1<=nums.length<=3105
1 < = n u m s [ i ] < = 100 1 <= nums[i] <= 100 1<=nums[i]<=100
输入保证 nums 中至少有一个质数。

思路1:一次遍历

函数checkIsPrime用于判断num是否为质数,时间复杂度为 O ( s q r t ( n ) ) O(sqrt(n)) O(sqrt(n))
一次遍历,维护minPos表示最小的质数位置,maxPos表示最大的质数位置,最后maxPos-minPos就是答案
维护的时候,如果该数是质数,更新maxPos;如果minPos未被更新过,即minPos为初始值-1,更新minPos

整体时间复杂度 O ( N ∗ s q r t ( M ) ) O(N*sqrt(M)) O(Nsqrt(M))
代码如下:

func checkIsPrime(num int) bool {if num <= 1 {return false}for i := 2; i*i <= num; i ++ {if num % i == 0 {return false}}return true
}
func maximumPrimeDifference(nums []int) int {minPos,maxPos := -1,-1for idx,elem := range nums {if checkIsPrime(elem) {if minPos == -1 {minPos = idx}maxPos = idx}}return maxPos - minPos
}

在这里插入图片描述

思路2:分别从头尾遍历

在思路1的基础上考虑对maxPos的更新过程进行优化,含义为最大的质数出现的位置,所以倒序遍历找第一个质数即可。
极端情况下,最中间的数是质数,还是会把全部的数都判断一遍。

代码:

func checkIsPrime(num int) bool {if num <= 1 {return false}for i := 2; i*i <= num; i ++ {if num % i == 0 {return false}}return true
}
func maximumPrimeDifference(nums []int) int {minPos,maxPos := -1,-1for idx,elem := range nums {if checkIsPrime(elem) {minPos = idxbreak}}for idx := len(nums) - 1; idx >= 0; idx -- {if checkIsPrime(nums[idx]) {maxPos = idx break}}return maxPos - minPos
}

在这里插入图片描述

思路3:标记结果 空间换时间

在思路1的基础上,考虑有的数如果重复出现的话,会被重复判断。
额外开辟map,存储该数是否为素数,空间换时间。
代码如下:

func checkIsPrime(num int) bool {if num <= 1 {return false}for i := 2; i*i <= num; i ++ {if num % i == 0 {return false}}return true
}
func maximumPrimeDifference(nums []int) int {minPos,maxPos := -1,-1mp := make(map[int]bool,len(nums))for idx,elem := range nums {if flag,ok := mp[elem]; ok {if flag {if minPos == -1 {minPos = idx}maxPos = idx}continue}if checkIsPrime(elem) {if minPos == -1 {minPos = idx}maxPos = idxmp[elem] = true}else{mp[elem] = false}}return maxPos - minPos
}

实际上并没有优化时间,很奇怪
在这里插入图片描述

思路4:埃式筛

可以考虑使用素数筛预处理得到所有质数,其中埃式筛的时间复杂度是 O ( n l o g l o g n ) O(nloglogn) O(nloglogn)

埃式筛优化时间复杂度的原理:

考虑这样一件事情:对于任意一个大于 1 的正整数 n,那么它的 x 倍就是合数(x > 1)。利用这个结论,我们可以避免很多次不必要的检测。
如果我们从小到大考虑每个数,然后同时把当前这个数的所有(比自己大的)倍数记为合数,那么运行结束的时候没有被标记的数就是素数了。

 //埃式筛 
func InitPrime(maxNum int) map[int]struct{} {mp := make(map[int]struct{},maxNum)mp[1]  = struct{}{} //注意特判for i := 2; i <= maxNum; i ++ {if _,ok := mp[i]; ok { continue}for j := 2*i; j <= maxNum; j += i {mp[j] = struct{}{} //非素数}}return mp
}
func maximumPrimeDifference(nums []int) int {maxNum := 0for _,elem := range nums {if maxNum < elem {maxNum = elem}}primeMap := InitPrime(maxNum)minPos,maxPos := -1,-1for idx,elem := range nums {if _,ok := primeMap[elem];!ok {if minPos == -1 {minPos = idx}maxPos = idx}}return maxPos - minPos
}

在这里插入图片描述

思路5:欧拉筛

欧拉筛是在埃氏筛的基础上优化的,时间复杂度为 O ( n ) O(n) O(n)

埃氏筛法仍有优化空间,它会将一个合数重复多次标记。有没有什么办法省掉无意义的步骤呢?答案是肯定的。
如果能让每个合数都只被标记一次,那么时间复杂度就可以降到 O(n) 了。

func InitPrime(maxNum int) map[int]struct{} {mp := make(map[int]struct{},maxNum)mp[1]  = struct{}{} //注意特判primes := make([]int,0,1000)for i := 2; i <= maxNum; i ++ {if _,ok := mp[i]; !ok { primes = append(primes,i)}for j := 0; primes[j] <= maxNum/i; j++ {mp[primes[j]*i] = struct{}{} //非素数if i % primes[j] == 0 {break}}}return mp
}
func maximumPrimeDifference(nums []int) int {maxNum := 0for _,elem := range nums {if maxNum < elem {maxNum = elem}}primeMap := InitPrime(maxNum)minPos,maxPos := -1,-1for idx,elem := range nums {if _,ok := primeMap[elem];!ok {if minPos == -1 {minPos = idx}maxPos = idx}}return maxPos - minPos
}

在这里插入图片描述

思路6: 打表

考虑到 1 < = n u m s [ i ] < = 100 1 <= nums[i] <= 100 1<=nums[i]<=100,100以内的素数个数是有限的,离线把这些数据处理出来

func checkIsPrime(num int) bool {if num <= 1 {return false}for i := 2; i*i <= num; i ++ {if num % i == 0 {return false}}return true
}
func maximumPrimeDifference(nums []int) int {minPos,maxPos := -1,-1primes := []int{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}mp := make(map[int]struct{},len(primes))for _,elem := range primes {mp[elem] = struct{}{}}numsLen := len(nums)for idx := 0; idx < numsLen; idx ++ {if _,ok := mp[nums[idx]];ok {minPos = idxbreak}}for idx := numsLen - 1; idx >= 0; idx -- {if _,ok := mp[nums[idx]];ok {maxPos = idxbreak}}return maxPos - minPos
}

在这里插入图片描述

相关文章:

【力扣 - 每日一题】3115. 质数的最大距离(一次遍历、头尾遍历、空间换时间、埃式筛、欧拉筛、打表)Golang实现

原题链接 题目描述 给你一个整数数组 nums。 返回两个&#xff08;不一定不同的&#xff09;质数在 nums 中 下标 的 最大距离。 示例 1&#xff1a; 输入&#xff1a; nums [4,2,9,5,3] 输出&#xff1a; 3 解释&#xff1a; nums[1]、nums[3] 和 nums[4] 是质数。因此答…...

【Gin】项目搭建 一

环境准备 首先确保自己电脑安装了Golang 开始项目 1、初始化项目 mkdir gin-hello; # 创建文件夹 cd gin-hello; # 需要到刚创建的文件夹里操作 go mod init goserver; # 初始化项目&#xff0c;项目名称&#xff1a;goserver go get -u github.com/gin-gonic/gin; # 下载…...

C++ 和C#的差别

首先把眼睛瞪大&#xff0c;然后憋住一口气&#xff0c;读下去&#xff1a; 1、CPP 就是C plus plus的缩写&#xff0c;中国大陆的程序员圈子中通常被读做"C加加"&#xff0c;而西方的程序员通常读做"C plus plus"&#xff0c;它是一种使用非常广泛的计算…...

Vue2组件传值(通信)的方式

目录 1.父传后代 ( 后代拿到了父的数据 )1. 父组件引入子组件&#xff0c;绑定数据2. 子组件直接使用父组件的数据3. 依赖注入(使用 provide/inject API)1.在祖先组件中使用 provide2.在后代组件中使用 inject 2.后代传父 &#xff08;父拿到了后代的数据&#xff09;1. 子组件…...

【数据结构 - 时间复杂度和空间复杂度】

文章目录 <center>时间复杂度和空间复杂度算法的复杂度时间复杂度大O的渐进表示法常见时间复杂度计算举例 空间复杂度实例 时间复杂度和空间复杂度 算法的复杂度 算法在编写成可执行程序后&#xff0c;运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏&…...

telegram支付

今天开始接入telegram支付,参考教程这个是telegram的官方说明,详细介绍了机器人支付API。 文章公开地址 新建机器人 因为支付是一个单独的系统,所以在做支付的时候单独创建了一个bot,没有用之前的bot了,特意这样将其分开。创建bot的方法和之前不变,这里不过多介绍。 获…...

elasticsearch-6.8.23的集群搭建过程

三个节点的 ElasticSearch 集群搭建步骤 准备三台机器&#xff1a;28.104.87.98、28.104.87.100、28.104.87.101 和 ElasticSearch 的安装包 elasticsearch-6.8.23.tar.gz ----------------------------- 28.104.87.98&#xff0c;使用 root 用户操作 ----------------------…...

javascript输出语法

javascript输出有三种方式 一种是弹窗输出&#xff0c;就是网页弹出一个对话框&#xff0c;弹出输出内容 语法是aler(内容) 示例代码如下 <body> <script> alert(你好); </script> </body> 这段代码运行后网页会出现一个对话框&#xff0c;弹出你…...

仓库管理系统26--权限设置

原创不易&#xff0c;打字不易&#xff0c;截图不易&#xff0c;多多点赞&#xff0c;送人玫瑰&#xff0c;留有余香&#xff0c;财务自由明日实现 1、权限概述 在应用软件中&#xff0c;通常将软件的功能分为若干个子程序&#xff0c;通过主程序调用。那么&#xff0c;通过…...

d3dx9_43.dll丢失怎么解决?d3dx9_43.dll怎么安装详细教程

在使用计算机中&#xff0c;如果遇到d3dx9_43.dll丢失或许找不到d3dx9_43.dll无法运行打开软件怎么办&#xff1f;这个是非常常见问题&#xff0c;下面我详细介绍一下d3dx9_43.dll是什么文件与d3dx9_43.dll的各种问题以及d3dx9_43.dll丢失的多个解决方法&#xff01; 一、d3dx9…...

[C++] 退出清理函数解读(exit、_exit、abort、atexit)

说明&#xff1a;在C中&#xff0c;exit、_exit&#xff08;或_Exit&#xff09;、abort和atexit是用于控制程序退出和清理的标准库函数。下面是对这些函数的详细解读&#xff1a; exit 函数原型&#xff1a;void exit(int status);作用&#xff1a;exit函数用于正常退出程序…...

代码随想录(回溯)

组合&#xff08;Leetcode77&#xff09; 思路 用递归每次遍历从1-n得数&#xff0c;然后list来记录是不是组合到k个了&#xff0c;然后这个每次for循环的开始不能和上一个值的开始重复&#xff0c;所以设置个遍历开始索引startindex class Solution {static List<List<…...

编译原理1

NFA&DFA 在正规式的等价证明可以借助正规集&#xff0c;也可以通过有限自动机DFA来证明等价&#xff0c;以下例题是针对DFA证明正规式的等价&#xff0c;主要步骤是①NFA&#xff1b;②状态转换表&#xff1b; ③状态转换矩阵&#xff1b; ④化简DFA&#xff1b; 文法和语…...

【信息系统项目管理师知识点速记】组织通用管理:流程管理

23.2 流程管理 通过流程视角能够真正看清楚组织系统的本质与内在联系,理顺流程能够理顺整个组织系统。流程是组织运行体系的框架基础,流程框架的质量影响和决定了整个组织运行体系的质量。把流程作为组织运行体系的主线,配备满足流程运作需要的资源,并构建与流程框架相匹配…...

前端 JS 经典:箭头函数的意义

箭头函数是为了消除函数的二义性。 1. 二义性 函数的二义性指函数有不同的两种用法&#xff0c;就造成了二义性&#xff0c;函数的两种用法&#xff1a;1. 指令序列。2. 构造器 1.1 指令序列 就是调用函数&#xff0c;相当于将函数内部的代码再从头执行一次。 1.2 构造器 …...

Java List操作详解及常用方法

Java List操作详解及常用方法 大家好&#xff0c;我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01; 什么是Java List&#xff1f; Java中的List是一种动态数组&#xff0c;它允许存…...

《mysql篇》--查询(进阶)

目录 将查询结果作为插入数据 聚合查询 聚合函数 count sum group by子句 having 联合查询 笛卡尔积 多表查询 join..on实现多表查询 内连接 外连接 自连接 子查询 合并查询 将查询结果作为插入数据 Insert into 表2 select * from 表1//将表1的查询数据插入…...

数据库-MySQL 实战项目——书店图书进销存管理系统数据库设计与实现(附源码)

一、前言 该项目非常适合MySQL入门学习的小伙伴&#xff0c;博主提供了源码、数据和一些查询语句&#xff0c;供大家学习和参考&#xff0c;代码和表设计有什么不恰当还请各位大佬多多指点。 所需环境 MySQL可视化工具&#xff1a;navicat&#xff1b; 数据库&#xff1a;MySq…...

eNSP中WLAN的配置和使用

一、基础配置 1.拓扑图 2.VLAN和IP配置 a.R1 <Huawei>system-view [Huawei]sysname R1 GigabitEthernet 0/0/0 [R1-GigabitEthernet0/0/0]ip address 200.200.200.200 24 b.S1 <Huawei>system-view [Huawei]sysname S1 [S1]vlan 100 [S1-vlan100]vlan 1…...

<sa8650>QCX ID16_UsecaseRawLiteAuto 使用详解

<sa8650>QCX ID16_UsecaseRawLiteAuto 使用详解 一、前言二、ID16_UsecaseRawLiteAuto拓扑图三、UsecaseRawLiteAuto拓扑图 解析3.1 camxUsecaseRawLiteAuto.xml3.2 camxRawLiteAuto.xml四、测试一、前言 我们在使用QCX时,如果由于使用的摄像头自带了ISP,那么可能不需要使…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook&#xff0c;用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途&#xff0c;下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

3-11单元格区域边界定位(End属性)学习笔记

返回一个Range 对象&#xff0c;只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意&#xff1a;它移动的位置必须是相连的有内容的单元格…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容&#xff08;一&#xff09;CDN 基础概念1. 定义2. 组成部分 &#xff08;二&#xff09;CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 &#xff08;三&#xff09;CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列&#xff1f;2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...

LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf

FTP 客服管理系统 实现kefu123登录&#xff0c;不允许匿名访问&#xff0c;kefu只能访问/data/kefu目录&#xff0c;不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...