【YOLOv5进阶】——引入注意力机制-以SE为例
声明:笔记是做项目时根据B站博主视频学习时自己编写,请勿随意转载!
一、站在巨人的肩膀上
SE模块即Squeeze-and-Excitation 模块,这是一种常用于卷积神经网络中的注意力机制!!
借鉴代码的代码链接如下:
注意力机制-SE
https://github.com/ZhugeKongan/Attention-mechanism-implementation
需要model里面的SE_block.py文件

# -*- coding: UTF-8 -*-
"""
SE structure"""import torch.nn as nn # 导入PyTorch的神经网络模块
import torch.nn.functional as F # 导入PyTorch的神经网络功能函数模块 class SE(nn.Module): # 定义一个名为SE的类,该类继承自PyTorch的nn.Module,表示一个神经网络模块 def __init__(self, in_chnls, ratio): # 初始化函数,in_chnls表示输入通道数,ratio表示压缩比率 super(SE, self).__init__() # 调用父类nn.Module的初始化函数 # 使用AdaptiveAvgPool2d将输入的空间维度压缩为1x1,即全局平均池化 self.squeeze = nn.AdaptiveAvgPool2d((1, 1)) # 使用1x1卷积将通道数压缩为原来的1/ratio,实现特征压缩 self.compress = nn.Conv2d(in_chnls, in_chnls // ratio, 1, 1, 0) # 使用1x1卷积将通道数扩展回原来的in_chnls,实现特征激励 self.excitation = nn.Conv2d(in_chnls // ratio, in_chnls, 1, 1, 0) def forward(self, x): # 定义前向传播函数 out = self.squeeze(x) # 对输入x进行全局平均池化 out = self.compress(out) # 对池化后的输出进行特征压缩 out = F.relu(out) # 对压缩后的特征进行ReLU激活 out = self.excitation(out) # 对激活后的特征进行特征激励 # 对激励后的特征应用sigmoid函数,然后与原始输入x进行逐元素相乘,实现特征重标定 return x*F.sigmoid(out)
代码后面有附注的注释(GPT解释的,很好用),理解即可。对于使用者来说,重要关注点还是它的输入通道、输出通道、需要传入的参数等!!这个函数整体传入in_chnls, ratio两个参数。
二、开始修改网络结构
与上节的C2f修改基本流程一致,但稍有不同
- model/common.py加入新增的SE网络结构,直接复制粘贴如下,这里加在了上节的C2f之前:

上面说到这个函数整体传入in_chnls, ratio两个参数!!
- model/yolo.py设定网络结构的传参细节
上期的C2f模块之所以可以参照原本存在的C3模块属性,是因为两者相似,但这里的SE模块就不可简单的在C3x后加SE,而是需要在下面加入一段elif代码:
elif m is SE:c1 = ch[f]c2 = args[0]if c2 != no: # if not outputc2 = make_divisible(c2 * gw, 8)args = [c1, args[1]]

即当新引入的模块中存在输入输出维度时,需要使用gw调整输出维度!!
- model/yolov5s.yaml设定现有模型结构配置文件
老样子,复制一份新的配置文件命名为yolov5s-se.yaml。首先需要在backbone的最后加上SE模块(相当于多了一层为第10层);其次考虑到backbone里多了一层,且在head里的输入层来源不止上一层(-1)一个,所以输入层来源大于等于第10层的都需要改为往后递推+1层。下图左边为原始的yaml配置文件,右侧为修改后的:

即当yaml文件引入新的层后,需要修改模型结构的from参数(上期是将C3替换为C2f模块,所以不涉及这一点)!!
- train.py训练时指定模型结构配置文件
这次将parse_model函数里的第二个参数cfg改为yolov5s-se.yaml即可,运行train.py开始训练!!

可见训练时第10层已经引入了SE注意力机制模块:

100次迭代后结果如下,结果保存在runs\train\exp12文件夹,文件夹里有很多指标曲线可对比分析:

往期精彩
STM32专栏(9.9)
http://t.csdnimg.cn/A3BJ2
OpenCV-Python专栏(9.9)
http://t.csdnimg.cn/jFJWe
AI底层逻辑专栏(9.9)
http://t.csdnimg.cn/6BVhM
机器学习专栏(免费)
http://t.csdnimg.cn/ALlLlSimulink专栏(免费)
http://t.csdnimg.cn/csDO4电机控制专栏(免费)
http://t.csdnimg.cn/FNWM7
相关文章:
【YOLOv5进阶】——引入注意力机制-以SE为例
声明:笔记是做项目时根据B站博主视频学习时自己编写,请勿随意转载! 一、站在巨人的肩膀上 SE模块即Squeeze-and-Excitation 模块,这是一种常用于卷积神经网络中的注意力机制!! 借鉴代码的代码链接如下&a…...
【C++题解】1456. 淘淘捡西瓜
问题:1456. 淘淘捡西瓜 类型:贪心 题目描述: 地上有一排西瓜,每个西瓜都有自己的重量。淘淘有一个包,包的容量是固定的,淘淘希望尽可能在包里装更多的西瓜(当然要装整个的,不能切开…...
用Python读取Word文件并提取标题
前言 在日常工作中,我们经常需要处理Word文档,特别是从中提取关键信息,如标题、段落等。今天,我们将利用Python来实现这一功能,并为大家提供一段完整的代码示例。 准备工作 首先,你需要安装python-docx库…...
Windows编程上
Windows编程[上] 一、Windows API1.控制台大小设置1.1 GetStdHandle1.2 SetConsoleWindowInfo1.3 SetConsoleScreenBufferSize1.4 SetConsoleTitle1.5 封装为Innks 2.控制台字体设置以及光标调整2.1 GetConsoleCursorInfo2.2 SetConsoleCursorPosition2.3 GetCurrentConsoleFon…...
BiTCN-Attention一键实现回归预测+8张图+特征可视化图!注意力全家桶再更新!
声明:文章是从本人公众号中复制而来,因此,想最新最快了解各类智能优化算法及其改进的朋友,可关注我的公众号:强盛机器学习,不定期会有很多免费代码分享~ 目录 原理简介 数据介绍 结果展示 全家桶代码目…...
zoom缩放问题(关于ElementPlus、Echarts、Vue3draggable等组件偏移问题)
做了一个项目下来,由于整体界面偏大,采取了缩放90%,导致很多组件出现偏移问题,以下我会把我遇到的各种组件偏移问题依次进行描述解答: ElementPlus选择器下拉偏移 <template><el-select :teleported"f…...
【后端面试题】【中间件】【NoSQL】MongoDB的配置服务器、复制机制、写入语义和面试准备
MongoDB的配置服务器 引入了分片机制之后,MongoDB启用了配置服务器(config server) 来存储元数据,这些元数据包括分片信息、权限控制信息,用来控制分布式锁。其中分片信息还会被负责执行查询mongos使用。 MongoDB的配置服务器有一个很大的优…...
视频监控汇聚平台LntonCVS视频监控业务平台具体有哪些功能?
LntonCVS视频监控平台是一款基于H5技术开发的专业安防视频监控产品,旨在为安防视频监控行业提供全面的解决方案。以下是平台的主要功能和特点: 1. 统一接入管理: - 支持国内外各种品牌、协议和设备类型的监控产品统一接入管理。 - 提供标准的…...
我不小心把生产的数据改错了!同事帮我用MySQL的BinLog挽回了罚款
之前在生产做修改数据的时候不小心改错了一行数据,本来以为会被通报批评,但是同事利用binlog日志查看到了之前的旧数据,并且帮我回滚了,学到了,所以写了一篇binlog的文章分享给大家。 MySQL的Binary Log(简…...
Windows系统安装NVM,实现Node.js多版本管理
目录 一、前言 二、NVM简介 三、准备工作 1、卸载Node 2、创建文件夹 四、下载NVM 五、安装NVM 六、使用NVM 1、NVM常用操作命令 2、查看NVM版本信息 3、查看Node.js版本列表; 4、下载指定版本Node.js 5、使用指定版本Node.js 6、查看已安装Node.js列…...
k8s部署单节点redis
一、configmap # cat redis-configmap.yaml apiVersion: v1 kind: ConfigMap metadata:name: redis-single-confignamespace: redis data:redis.conf: |daemonize nobind 0.0.0.0port 6379tcp-backlog 511timeout 0tcp-keepalive 300pidfile /data/redis-server.pidlogfile /d…...
云微客矩阵系统:如何利用智能策略引领营销新时代?
近些年,短视频行业的风头一时无二,大量的商家和企业进驻短视频赛道,都或多或少的实现了实体门店的流量增长。虽然说现在短视频的门槛在逐步降低,但是迄今为止依旧有很多人在短视频剪辑面前望而却步。 最近在短视频营销领域&#x…...
嵌入式Linux系统编程 — 6.3 kill、raise、alarm、pause函数向进程发送信号
目录 1 kill函数 1.1 kill函数介绍 1.2 示例程序 2 raise函数 2.1 raise函数介绍 2.2 示例程序 3 alarm函数 3.1 alarm函数介绍 3.2 示例程序 4 pause函数 4.1 pause函数介绍 4.2 示例程序 与 kill 命令相类似, Linux 系统提供了 kill()系统调用&#…...
Swoole实践:如何使用协程构建高性能爬虫
随着互联网的普及,web爬虫已经成为了一个非常重要的工具,它可以帮助我们快速地抓取所需要的数据,从而降低数据获取成本。在爬虫的实现中,性能一直是一个重要的考虑因素。swoole是一款基于php的协程框架,它可以帮助我们…...
基于人脸68特征点识别的美颜算法(一) 大眼算法 C++
1、加载一张原图,并识别人脸的68个特征点 cv::Mat img cv::imread("5.jpg");// 人脸68特征点的识别函数vector<Point2f> points_vec dectectFace68(img);// 大眼效果函数Mat dst0 on_BigEye(800, img, points_vec);2、函数 vector<Point2f&g…...
算法金 | 欧氏距离算法、余弦相似度、汉明、曼哈顿、切比雪夫、闵可夫斯基、雅卡尔指数、半正矢、Sørensen-Dice
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 抱个拳,送个礼 在算法模型构建中,我们经常需要计算样本之间的相似度,通常的做法是计算样本之间的距…...
项目实战--Spring Boot大数据量报表Excel优化
一、项目场景 项目中要实现交易报表,处理大规模数据导出时,出现单个Excel文件过大导致性能下降的问题,需求是导出大概四千万条数据到Excel文件,不影响正式环境的其他查询。 二、方案 1.使用读写分离,查询操作由从库…...
C#编程技术指南:从入门到精通的全面教程
无论你是编程新手,还是想要深化.NET技能的开发者,本文都将为你提供一条清晰的学习路径,从C#基础到高级特性,每一站都配有详尽解析和实用示例,旨在帮助你建立坚实的知识体系,并激发你对C#及.NET生态的热情。…...
Redis+定式任务实现简易版消息队列
Redis是一个开源的内存中数据结构存储系统,通常被用作数据库、缓存和消息中间件。 Redis主要将数据存储在内存中,因此读写速度非常快。 支持不同的持久化方式,可以将内存中的数据定期写入磁盘,保证数据持久性。 redis本身就有自己…...
学习在 C# 中使用 Lambda 运算符
在 C# 中,lambda 运算符 > 同时用于 lambda 表达式和表达式体成员。 1. Lambda 表达式 Lambda 表达式是一种简洁的表示匿名方法(没有名称的方法)的方法。它使用 lambda 运算符 >,可以读作“转到”。运算符的左侧指定输入参…...
日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...
centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...
现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南
🚀 C extern 关键字深度解析:跨文件编程的终极指南 📅 更新时间:2025年6月5日 🏷️ 标签:C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言🔥一、extern 是什么?&…...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...
C++.OpenGL (14/64)多光源(Multiple Lights)
多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...
排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...
使用LangGraph和LangSmith构建多智能体人工智能系统
现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
