当前位置: 首页 > news >正文

双向广搜——AcWing 190. 字串变换

双向广搜

定义

双向广度优先搜索(Bi-directional Breadth-First Search, Bi-BFS)是一种在图或树中寻找两点间最短路径的算法。与传统的单向广度优先搜索相比,它从起始点和目标点同时开始搜索,从而有可能显著减少搜索空间,提高搜索效率,特别是在处理大规模图或者寻找最短路径时更为明显。

运用情况

  1. 最短路径问题:当需要快速找到两个节点间的最短路径时,特别是路径非常长或者图非常大的情况下,双向BFS比单向BFS更高效。
  2. 有界搜索问题:在一些问题中,比如迷宫求解,我们知道起始点和终点,且关心的是尽快相遇而不是探索整个图,这时双向BFS非常适用。
  3. 游戏AI:在某些游戏中,为了快速计算玩家与目标之间的最短路径,可以使用双向BFS。
  4. 网络路由:在网络通信中寻找最短的路由路径时,也可以应用此算法。

注意事项

  1. 相遇判断:当两个搜索的前沿相遇时,需要确保正确识别并停止搜索,避免重复计算。
  2. 路径合并:找到相遇点后,需要合并两个方向的路径以得到完整的最短路径。
  3. 空间复杂度:虽然可以减少搜索的深度,但同时维护两个队列(或集合)可能会增加额外的空间消耗。
  4. 平衡问题:为了优化性能,需要尽量保持两个方向的搜索速度平衡,可以通过调整每一步扩展的节点数来实现。

解题思路

  1. 初始化:设置两个队列,一个用于存储从起点出发的节点,另一个用于存储从终点出发的节点。同时,为两个方向的节点分别标记已访问状态,防止重复访问。
  2. 广度优先遍历:同时进行两个方向的广度优先遍历。每次遍历时,从两个队列中各取出一层的节点进行扩展,并将新扩展的节点加入到相应的队列中。
  3. 检查相遇:在扩展节点的过程中,检查是否有节点已经被另一个方向访问过。如果发现这样的节点,说明找到了一条从起点到终点的路径,此时停止搜索。
  4. 路径合并:从相遇节点开始,逆向追踪标记,直到回到起点或终点,这样就可以得到完整的最短路径。
  5. 优化策略:根据具体问题,可能需要考虑启发式信息、队列管理策略等进一步优化搜索过程。

AcWing 190. 字串变换

题目描述

190. 字串变换 - AcWing题库

运行代码

#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
#include <unordered_map>using namespace std;const int N = 6;int n;
string A, B;
string a[N], b[N];int extend(queue<string>& q, unordered_map<string, int>&da, unordered_map<string, int>& db, string a[N], string b[N])
{int d = da[q.front()];while (q.size() && da[q.front()] == d){auto t = q.front();q.pop();for (int i = 0; i < n; i ++ )for (int j = 0; j < t.size(); j ++ )if (t.substr(j, a[i].size()) == a[i]){string r = t.substr(0, j) + b[i] + t.substr(j + a[i].size());if (db.count(r)) return da[t] + db[r] + 1;if (da.count(r)) continue;da[r] = da[t] + 1;q.push(r);}}return 11;
}int bfs()
{if (A == B) return 0;queue<string> qa, qb;unordered_map<string, int> da, db;qa.push(A), qb.push(B);da[A] = db[B] = 0;int step = 0;while (qa.size() && qb.size()){int t;if (qa.size() < qb.size()) t = extend(qa, da, db, a, b);else t = extend(qb, db, da, b, a);if (t <= 10) return t;if ( ++ step == 10) return -1;}return -1;
}int main()
{cin >> A >> B;while (cin >> a[n] >> b[n]) n ++ ;int t = bfs();if (t == -1) puts("NO ANSWER!");else cout << t << endl;return 0;
}

代码思路

  1. 输入处理:首先读取起始字符串A和目标字符串B,然后逐行读取变换规则(子串A[i]到B[i]的变换)直到文件结束。

  2. 双端BFS:算法采用了双端BFS策略,即同时从字符串A和B出发,试图找到两者之间的最短变换路径。使用两个队列qaqb分别存储从A和B出发的可能状态,以及两个哈希表dadb记录每个状态到起点的距离。

  3. 扩展函数:定义了extend函数,用于从一个队列中取出所有状态并尝试应用所有变换规则,扩展出新的状态加入队列,并更新距离哈希表。这个函数是BFS的关键,它确保每次扩展只增加一步操作。

  4. 主循环:在主循环中交替从两端扩展,直到找到变换路径或者达到最大步数限制。

  5. 结果判断:最后,根据搜索结果输出最少步数或"No Answer!"。

改进思路

  1. 减少重复计算:当前代码在扩展状态时,对每个状态与每条规则都进行了匹配尝试,这可能会导致大量重复计算,尤其是在规则较多或字符串较长时。可以通过维护一个已访问状态的集合来避免重复探索相同的状态。

  2. 规则预处理:为了提高效率,可以在开始搜索之前对变换规则进行预处理,比如建立一个从子串到新子串的直接映射,这样在扩展状态时可以直接查找而无需遍历所有规则。

  3. 剪枝:在双向BFS中,当从两端搜索的边界状态的距离之和已经大于当前最小步数时,可以提前终止搜索,这是一种有效的剪枝策略。

  4. 内存使用优化:考虑使用更节省空间的数据结构,比如使用滚动数组或者动态调整容器大小来减少内存占用。

相关文章:

双向广搜——AcWing 190. 字串变换

双向广搜 定义 双向广度优先搜索&#xff08;Bi-directional Breadth-First Search, Bi-BFS&#xff09;是一种在图或树中寻找两点间最短路径的算法。与传统的单向广度优先搜索相比&#xff0c;它从起始点和目标点同时开始搜索&#xff0c;从而有可能显著减少搜索空间&#x…...

工商业光伏项目如何快速开发?

一、前期调研与规划 1、屋顶资源评估&#xff1a;详细测量屋顶面积、承重能力及朝向&#xff0c;利用光伏业务管理软件进行日照分析和发电量预测&#xff0c;确保项目可行性。 2、政策与补贴研究&#xff1a;深入了解当地政府对工商业光伏项目的政策支持和补贴情况&#xff0…...

Kafka入门-分区及压缩

一、生产者消息分区 Kafka的消息组织方式实际上是三级结构&#xff1a;主题-分区-消息。主题下的每条消息只会保存在某一个分区中&#xff0c;而不会在多个分区中被保存多份。 分区的作用就是提供负载均衡的能力&#xff0c;或者说对数据进行分区的主要原因&#xff0c;就是为…...

被⽹络罪犯利⽤的5⼤ChatGPT越狱提⽰

⾃ChatGPT发布的近18个月以来&#xff0c;⽹络罪犯们已经能够利⽤⽣成式AI进⾏攻击。OpenAI在其内容政策中制定了限制措施&#xff0c;以阻⽌⽣成恶意内容。作为回应&#xff0c;攻击者们创建了⾃⼰的⽣成式AI平台&#xff0c;如 WormGPT和FraudGPT&#xff0c;并且他们还分享了…...

AVR晶体管测试仪开源制作与验证

AVR晶体管测试仪开源制作与验证 &#x1f4cd;原项目地址&#xff1a;https://www.mikrocontroller.net/articles/AVR_Transistortester github地址&#xff1a;https://github.com/Mikrocontroller-net/transistortester &#x1f388;EasyEDA项目地址&#xff1a;https://osh…...

头条系统-05-延迟队列精准发布文章-概述添加任务(db和redis实现延迟任务)、取消拉取任务定时刷新(redis管道、分布式锁setNx)...

文章目录 延迟任务精准发布文章 1)文章定时发布2)延迟任务概述 2.1)什么是延迟任务2.2)技术对比 2.2.1)DelayQueue2.2.2)RabbitMQ实现延迟任务2.2.3)redis实现 3)redis实现延迟任务4)延迟任务服务实现 4.1)搭建heima-leadnews-schedule模块4.2)数据库准备4.3)安装redis4.4)项目…...

不同系统间数据交换要通过 api 不能直接数据库访问

很多大数据开发提供数据给外部系统直接给表结构&#xff0c;这是不好的方式。在不同系统间进行数据交换时&#xff0c;通过API&#xff08;应用程序编程接口&#xff09;而非直接访问数据库是现代系统集成的一种最佳实践。 目录 为什么要通过API进行数据交换如何通过API进行数据…...

深度探索“目录名称无效“:原因、解决方案与最佳实践

目录名称无效&#xff1a;现象背后的秘密 在日常使用电脑或移动设备时&#xff0c;我们时常会遇到“目录名称无效”的错误提示&#xff0c;这一提示仿佛是一道无形的屏障&#xff0c;阻断了我们与重要数据的联系。从本质上讲&#xff0c;“目录名称无效”意味着系统无法识别或…...

open3d基础使用-简单易懂

Open3D是一个开源库&#xff0c;主要用于快速开发处理3D数据的软件。它提供了丰富的数据结构和算法&#xff0c;支持点云、网格和RGB-D图像等多种3D数据的处理。以下是对Open3D基础使用的详细归纳和说明&#xff1a; 一、安装Open3D Open3D可以通过Python的包管理器pip进行安…...

【前端】HTML+CSS复习记录【5】

文章目录 前言一、padding、margin、border&#xff08;边框边距&#xff09;二、样式优先级三、var&#xff08;使用 CSS 变量更改多个元素样式&#xff09;四、media quary&#xff08;媒体查询&#xff09;系列文章目录 前言 长时间未使用HTML编程&#xff0c;前端知识感觉…...

三分钟看懂SMD封装与COB封装的差异

全彩LED显示屏领域中&#xff0c;COB封装于SMD封装是比较常见的两种封装方式&#xff0c;SMD封装产品主要有常规小间距以及室内、户外型产品&#xff0c;COB封装产品主要集中在小间距以及微间距系列产品中&#xff0c;今天跟随COB显示屏厂家中品瑞一起快速看懂SMD封装与COB封装…...

深入理解策略梯度算法

策略梯度&#xff08;Policy Gradient&#xff09;算法是强化学习中的一种重要方法&#xff0c;通过优化策略以获得最大回报。本文将详细介绍策略梯度算法的基本原理&#xff0c;推导其数学公式&#xff0c;并提供具体的例子来指导其实现。 策略梯度算法的基本概念 在强化学习…...

Unicode 和 UTF-8 以及它们之间的关系

通俗易懂的 Unicode 和 UTF-8 解释 Unicode 是什么&#xff1f; 想象一下&#xff0c;我们有一个巨大的图书馆&#xff0c;这个图书馆里有各种各样的书&#xff0c;每本书都有一个唯一的编号。Unicode 就像是这个图书馆的目录系统&#xff0c;它给世界上所有的字符&#xff0…...

【C++】多态详解

&#x1f497;个人主页&#x1f497; ⭐个人专栏——C学习⭐ &#x1f4ab;点击关注&#x1f929;一起学习C语言&#x1f4af;&#x1f4ab; 目录 一、多态概念 二、多态的定义及实现 1. 多态的构成条件 2. 虚函数 2.1 什么是虚函数 2.2 虚函数的重写 2.3 虚函数重写的两个…...

C#异常捕获

前言 在C#中&#xff0c;我们无法保证我们编写的程序没有一点bug&#xff0c;如果我们对于这些抛出异常的bug不进行任何的处理的话&#xff0c;那么我们的软件在抛出这些异常的时候就会崩溃&#xff0c;也就是软件闪退&#xff0c;并且这种闪退由于我们没有进行处理&#xff0…...

工业一体机根据软件应用需求灵活选配

在当今工业领域&#xff0c;数字化、智能化的发展趋势愈发明显&#xff0c;工业一体机作为关键的设备&#xff0c;其重要性日益凸显。而能够根据软件应用需求进行灵活选配的工业一体机&#xff0c;更是为企业提供了高效、定制化的解决方案。 一、工业一体机的全封闭无风扇散热功…...

centos7 mqtt服务mosquitto搭建记录

1、系统centos7.6&#xff0c;安装默认版本 yum install mosquitto 2、启动运行 systemctl start mosquitto 3、设置自启动 systemctl enable mosquitto 4、修改配置文件 vim /etc/mosquitto/mosquitto.conf 监听端口&#xff0c;默认为1883&#xff0c;需要修改删除前面…...

双阶段目标检测算法:精确与效率的博弈

双阶段目标检测算法&#xff1a;精确与效率的博弈 目标检测是计算机视觉领域的一个核心任务&#xff0c;它涉及在图像或视频中识别和定位多个对象。双阶段目标检测算法是一种特殊的目标检测方法&#xff0c;它通过两个阶段来提高检测的准确性。本文将详细介绍双阶段目标检测算…...

Python量化交易策略

策略详情 按照1分k线图&#xff1b;跳过9&#xff1a;30点1分k线图不计算 买入&#xff1b;监控市面的可转债&#xff1b;当某1分涨幅大于x涨幅&#xff0c;一直重复x次&#xff0c;选择买入&#xff0c;符合x设置的条件只选择成交额最大的可转债买入&#xff08;x要自定义&…...

为什么我感觉 C 语言在 Linux 下执行效率比 Windows 快得多?

在开始前刚好我有一些资料&#xff0c;是我根据网友给的问题精心整理了一份「Linux的资料从专业入门到高级教程」&#xff0c; 点个关注在评论区回复“888”之后私信回复“888”&#xff0c;全部无偿共享给大家&#xff01;&#xff01;&#xff01;Windows的终端或者叫控制台…...

算法导论 总结索引 | 第四部分 第十六章:贪心算法

1、求解最优化问题的算法 通常需要经过一系列的步骤&#xff0c;在每个步骤都面临多种选择。对于许多最优化问题&#xff0c;使用动态规划算法求最优解有些杀鸡用牛刀了&#xff0c;可以使用更简单、更高效的算法 贪心算法&#xff08;greedy algorithm&#xff09;就是这样的算…...

用“文心一言”写的文章,看看AI写得怎么样?

​零售连锁店的“支付结算”业务设计 在数字化浪潮的推动下&#xff0c;连锁店零售支付结算的设计愈发重要。一个优秀的支付结算设计不仅能够提升用户体验&#xff0c;还能增强品牌竞争力&#xff0c;进而促进销售增长。 本文将围绕一个具体的连锁店零售支付结算案例&#xf…...

企业消费采购成本和员工体验如何实现“鱼和熊掌“的兼得?

有企业说企业消费采购成本和员工体验的关系好比是“鱼和熊掌”&#xff0c;无法兼得&#xff1f; 要想控制好成本就一定要加强管控&#xff0c;但是加强管控以后&#xff0c;就会很难让员工获得满意的体验度。如果不加以管控&#xff0c;员工自由度增加了&#xff0c;往往就很难…...

发表EI论文相当于SCI几区?

EI&#xff08;工程索引&#xff09;本身并不进行分区&#xff0c;它是一个收录工程领域高质量文献的数据库&#xff0c;与SCI&#xff08;科学引文索引&#xff09;的分区制度不同。然而&#xff0c;在非正式的学术评价中&#xff0c;有时人们会将EI与SCI的分区进行比较。 虽…...

STFT短时傅里叶变换MTLAB简析

代码&#xff1a; 解释&#xff1a; 如果信号x有Nx个时间样本&#xff0c;短时傅里叶变换的结果矩阵s有k列&#xff1b; k的计算方式如图所示&#xff0c;M是窗函数的长度&#xff0c;L是重叠长度。 此符号是向下取整符号。 短时傅里叶变换的结果矩阵s的行数与参数‘FFTLength’…...

海致科技实施实习生面试

一、面试内容 注&#xff1a;此次是电话面试 1.是XX先生吗 2.你是有考虑转实施的吗&#xff1f; 3.请讲一下你对项目部署实施的理解和掌握 4.用过数据库&#xff0c;会编写SQL语句吗&#xff1f; 5.讲一下SQL的常用关键字 6.了解SQL中的函数吗&#xff1f;谈谈函数 7.多…...

论文阅读之旋转目标检测ARC:《Adaptive Rotated Convolution for Rotated Object Detection》

论文link&#xff1a;link code&#xff1a;code ARC是一个改进的backbone&#xff0c;相比于ResNet&#xff0c;最后的几层有一些改变。 Introduction ARC自适应地旋转以调整每个输入的条件参数&#xff0c;其中旋转角度由路由函数以数据相关的方式预测。此外&#xff0c;还采…...

面向对象(Java)

构造方法只能在对象实例化的时候调用 this可以作为方法参数&#xff0c;表示调用方法的当前对象 this可以作为方法返回值&#xff0c;表示返回当前对象 封装 通过方法访问数据&#xff0c;隐藏类的实现细节 static&#xff1a;类对象共享&#xff0c;类加载时产生&#xff0c;…...

I/O多路复用

参考面试官&#xff1a;简单说一下阻塞IO、非阻塞IO、IO复用的区别 &#xff1f;_unix环境编程 阻塞io和非阻塞io-CSDN博客 同步阻塞(BIO) BIO 以流的方式处理数据 应用程序发起一个系统调用&#xff08;recvform&#xff09;&#xff0c;这个时候应用程序会一直阻塞下去&am…...

线性代数基础概念:向量空间

目录 线性代数基础概念&#xff1a;向量空间 1. 向量空间的定义 2. 向量空间的性质 3. 基底和维数 4. 子空间 5. 向量空间的例子 总结 线性代数基础概念&#xff1a;向量空间 向量空间是线性代数中最基本的概念之一&#xff0c;它为我们提供了一个抽象的框架&#xff0c…...