线程池666666
1. 作用
线程池内部维护了多个工作线程,每个工作线程都会去任务队列中拿取任务并执行,当执行完一个任务后不是马上销毁,而是继续保留执行其它任务。显然,线程池提高了多线程的复用率,减少了创建和销毁线程的时间。
2. 实现原理
线程池内部由任务队列、工作线程和管理者线程组成。
任务队列:存储需要处理的任务。每个任务其实就是具体的函数,在任务队列中存储函数指针和对应的实参。当工作线程获取任务后,就能根据函数指针来调用指定的函数。其实现可以是数组、链表、STL容器等。
工作线程:有N个工作线程,每个工作线程会去任务队列中拿取任务,然后执行具体的任务。当任务被处理后,任务队列中就不再有该任务了。当任务队列中没有任务时,工作线程就会阻塞。
管理者线程:周期性检测忙碌的工作线程数量和任务数量。当任务较多线程不够用时,管理者线程就会多创建几个工作线程来加快处理(不会超过工作线程数量的上限)。当任务较少线程空闲多时,管理者线程就会销毁几个工作线程来减少内存占用(不会低于工作线程数量的下限)。
注意:线程池中没有维护“生产者线程”,所谓的“生产者线程”就是往任务队列中添加任务的线程。
3. 手撕线程池
参考来源:爱编程的大丙。
【1】threadpool.c:
#include "threadpool.h"
#include <pthread.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <stdio.h>#define NUMBER 2 //管理者线程增加或减少的工作线程数量//任务结构体
typedef struct Task {void (*func)(void* arg);void* arg;
} Task;//线程池结构体
struct ThreadPool {//任务队列,视为环形队列Task* taskQ;int queueCapacity; //队列容量int queueSize; //当前任务个数int queueFront; //队头 -> 取任务int queueRear; //队尾 -> 加任务//线程相关pthread_t managerID; //管理者线程IDpthread_t* threadIDs; //工作线程IDint minNum; //工作线程最小数量int maxNum; //工作线程最大数量int busyNum; //工作线程忙的数量int liveNum; //工作线程存活数量int exitNum; //要销毁的工作线程数量pthread_mutex_t mutexPool; //锁整个线程池pthread_mutex_t mutexBusy; //锁busyNumpthread_cond_t notFull; //任务队列是否满pthread_cond_t notEmpty; //任务队列是否空//线程池是否销毁int shutdown; //释放为1,否则为0
};/**************************************************************** 函 数: threadPoolCreate* 功 能: 创建线程池并初始化* 参 数: min---工作线程的最小数量* max---工作线程的最大数量* capacity---任务队列的最大容量* 返回值: 创建的线程池的地址**************************************************************/
ThreadPool* threadPoolCreate(int min, int max, int capacity)
{//申请线程池空间ThreadPool* pool = (ThreadPool*)malloc(sizeof(ThreadPool));do {//此处循环只是为了便于失败释放空间,只会执行一次if (pool == NULL) {printf("pool create error!\n");break;}//申请任务队列空间,并初始化pool->taskQ = (Task*)malloc(sizeof(Task) * capacity);if (pool->taskQ == NULL) {printf("Task create error!\n");break;}pool->queueCapacity = capacity;pool->queueSize = 0;pool->queueFront = 0;pool->queueRear = 0;//初始化互斥锁和条件变量if (pthread_mutex_init(&pool->mutexPool, NULL) != 0 ||pthread_mutex_init(&pool->mutexBusy, NULL) != 0 ||pthread_cond_init(&pool->notFull, NULL) != 0 ||pthread_cond_init(&pool->notEmpty, NULL) != 0){printf("mutex or cond create error!\n");break;}//初始化shutdownpool->shutdown = 0;//初始化线程相关参数pool->threadIDs = (pthread_t*)malloc(sizeof(pthread_t) * max);if (pool->threadIDs == NULL) {printf("threadIDs create error!\n");break;}memset(pool->threadIDs, 0, sizeof(pthread_t) * max);pool->minNum = min;pool->maxNum = max;pool->busyNum = 0;pool->liveNum = min;pool->exitNum = 0;//创建管理者线程和工作线程pthread_create(&pool->managerID, NULL, manager, pool);//创建管理线程for (int i = 0; i < min; ++i) {pthread_create(&pool->threadIDs[i], NULL, worker, pool);//创建工作线程}return pool;} while (0);//申请资源失败,释放已分配的资源if (pool && pool->taskQ) free(pool->taskQ);if (pool && pool->threadIDs) free(pool->threadIDs);if (pool) free(pool);return NULL;
}/**************************************************************** 函 数: threadPoolDestroy* 功 能: 销毁线程池* 参 数: pool---要销毁的线程池* 返回值: 0表示销毁成功,-1表示销毁失败**************************************************************/
int threadPoolDestroy(ThreadPool* pool)
{if (!pool) return -1;//关闭线程池pool->shutdown = 1;//阻塞回收管理者线程pthread_join(pool->managerID, NULL);//唤醒所有工作线程,让其自杀for (int i = 0; i < pool->liveNum; ++i) {pthread_cond_signal(&pool->notEmpty);}//释放所有互斥锁和条件变量pthread_mutex_destroy(&pool->mutexBusy);pthread_mutex_destroy(&pool->mutexPool);pthread_cond_destroy(&pool->notEmpty);pthread_cond_destroy(&pool->notFull);//释放堆空间if (pool->taskQ) {free(pool->taskQ);pool->taskQ = NULL;}if (pool->threadIDs) {free(pool->threadIDs);pool->threadIDs = NULL;}free(pool);pool = NULL;return 0;
}/**************************************************************** 函 数: threadPoolAdd* 功 能: 生产者往线程池的任务队列中添加任务* 参 数: pool---线程池* func---函数指针,要执行的任务地址* arg---func指向的函数的实参* 返回值: 无**************************************************************/
void threadPoolAdd(ThreadPool* pool, void(*func)(void*), void* arg)
{pthread_mutex_lock(&pool->mutexPool);//任务队列满,阻塞生产者while (pool->queueSize == pool->queueCapacity && !pool->shutdown) {pthread_cond_wait(&pool->notFull, &pool->mutexPool);}//判断线程池是否关闭if (pool->shutdown) {pthread_mutex_unlock(&pool->mutexPool);return;}//添加任务进pool->taskQpool->taskQ[pool->queueRear].func = func;pool->taskQ[pool->queueRear].arg = arg;pool->queueSize++;pool->queueRear = (pool->queueRear + 1) % pool->queueCapacity;pthread_cond_signal(&pool->notEmpty);//唤醒工作线程pthread_mutex_unlock(&pool->mutexPool);
}/**************************************************************** 函 数: getThreadPoolBusyNum* 功 能: 获取线程池忙的工作线程数量* 参 数: pool---线程池* 返回值: 忙的工作线程数量**************************************************************/
int getThreadPoolBusyNum(ThreadPool* pool)
{pthread_mutex_lock(&pool->mutexBusy);int busyNum = pool->busyNum;pthread_mutex_unlock(&pool->mutexBusy);return busyNum;
}/**************************************************************** 函 数: getThreadPoolAliveNum* 功 能: 获取线程池存活的工作线程数量* 参 数: pool---线程池* 返回值: 存活的工作线程数量**************************************************************/
int getThreadPoolAliveNum(ThreadPool* pool)
{pthread_mutex_lock(&pool->mutexPool);int liveNum = pool->liveNum;pthread_mutex_unlock(&pool->mutexPool);return liveNum;
}/**************************************************************** 函 数: worker* 功 能: 工作线程的执行函数* 参 数: arg---实参传入,这里传入的是线程池* 返回值: 空指针**************************************************************/
void* worker(void* arg)
{ThreadPool* pool = (ThreadPool*)arg;while (1) {/* 1.取出任务队列中的队头任务 */pthread_mutex_lock(&pool->mutexPool);//无任务就阻塞线程while (pool->queueSize == 0 && !pool->shutdown) {pthread_cond_wait(&pool->notEmpty, &pool->mutexPool);//唤醒后,判断是不是要销毁线程if (pool->exitNum > 0) {//线程自杀pool->exitNum--;//销毁指标-1if (pool->liveNum > pool->minNum) {pool->liveNum--;//活着的工作线程-1pthread_mutex_unlock(&pool->mutexPool);threadExit(pool);}}}//线程池关闭了就退出线程if (pool->shutdown) {pthread_mutex_unlock(&pool->mutexPool);threadExit(pool);}//取出pool中taskQ的任务Task task;task.func = pool->taskQ[pool->queueFront].func;task.arg = pool->taskQ[pool->queueFront].arg;pool->queueFront = (pool->queueFront + 1) % pool->queueCapacity;//移动队头pool->queueSize--;//通知生产者添加任务pthread_cond_signal(&pool->notFull);pthread_mutex_unlock(&pool->mutexPool);/* 2.设置pool的busyNum+1 */pthread_mutex_lock(&pool->mutexBusy);pool->busyNum++;pthread_mutex_unlock(&pool->mutexBusy);/* 3.执行取出的任务 */printf("thread %ld start working ...\n", pthread_self());task.func(task.arg);free(task.arg);task.arg = NULL;printf("thread %ld end working ...\n", pthread_self());/* 4.设置pool的busyNum-1 */pthread_mutex_lock(&pool->mutexBusy);pool->busyNum--;pthread_mutex_unlock(&pool->mutexBusy);}return NULL;
}/**************************************************************** 函 数: manager* 功 能: 管理者线程的执行函数* 参 数: arg---实参传入,这里传入的是线程池* 返回值: 空指针**************************************************************/
void* manager(void* arg)
{ThreadPool* pool = (ThreadPool*)arg;while (!pool->shutdown) {/* 每隔3秒检测一次 */sleep(3);/* 获取pool中相关变量 */pthread_mutex_lock(&pool->mutexPool);int taskNum = pool->queueSize; //任务队列中的任务数量int liveNum = pool->liveNum; //存活的工作线程数量int busyNum = pool->busyNum; //忙碌的工作线程数量pthread_mutex_unlock(&pool->mutexPool);/* 功能一:增加工作线程,每次增加NUMBER个 *///当任务个数大于存活工作线程数,且存活工作线程数小于最大值if (taskNum > liveNum && liveNum < pool->maxNum) {pthread_mutex_lock(&pool->mutexPool);int counter = 0;for (int i = 0; i < pool->maxNum && counter < NUMBER&& pool->liveNum < pool->maxNum; ++i){if (pool->threadIDs[i] == 0) {pthread_create(&pool->threadIDs[i], NULL, worker, pool);counter++;pool->liveNum++;}}pthread_mutex_unlock(&pool->mutexPool);}/* 功能二:销毁工作线程,每次销毁NUMBER个 *///当忙的线程数*2 < 存活线程数,且存活线程数 > 最小线程数if (busyNum * 2 < liveNum && liveNum > pool->minNum) {pthread_mutex_lock(&pool->mutexPool);pool->exitNum = NUMBER;//唤醒NUMBER个工作线程,让其解除阻塞,在worker函数中自杀for (int i = 0; i < NUMBER; ++i) {pthread_cond_signal(&pool->notEmpty);}pthread_mutex_unlock(&pool->mutexPool);}}return NULL;
}/**************************************************************** 函 数: threadExit* 功 能: 工作线程退出函数,将工作线程的ID置为0,然后退出* 参 数: pool---线程池* 返回值: 无**************************************************************/
void threadExit(ThreadPool* pool)
{//将pool->threadIDs中的ID改为0pthread_t tid = pthread_self();for (int i = 0; i < pool->maxNum; i++) {if (pool->threadIDs[i] == tid) {pool->threadIDs[i] = 0;printf("threadExit() called, %ld exiting...\n", tid);break;}}pthread_exit(NULL);//退出
}
【2】threadpool.h:
#ifndef _THREADPOOL_H
#define _THREADPOOL_Htypedef struct ThreadPool ThreadPool;//创建线程池并初始化
ThreadPool* threadPoolCreate(int min, int max, int capacity);//销毁线程池
int threadPoolDestroy(ThreadPool* pool);//给线程池添加任务
void threadPoolAdd(ThreadPool* pool, void(*func)(void*), void* arg);//获取当前忙碌的工作线程的数量
int getThreadPoolBusyNum(ThreadPool* pool);//获取当前存活的工作线程的数量
int getThreadPoolAliveNum(ThreadPool* pool);/*********************其它函数**********************/
void* worker(void* arg);//工作线程的执行函数
void* manager(void* arg);//管理者线程的执行函数
void threadExit(ThreadPool* pool);//线程退出函数#endif
【3】main.c:
#include <stdio.h>
#include "threadpool.h"
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>//任务函数,所有线程都执行此任务
void testFunc(void* arg)
{int* num = (int*)arg;printf("thread %ld is working, number = %d\n", pthread_self(), *num);sleep(1);
}int main()
{//创建线程池: 最少3个工作线程,最多10个,任务队列容量为100ThreadPool* pool = threadPoolCreate(3, 10, 100);//加入100个任务于任务队列for (int i = 0; i < 100; ++i) {int* num = (int*)malloc(sizeof(int));*num = i + 100;threadPoolAdd(pool, testFunc, num);}//销毁线程池sleep(30);//保证任务全部运行完毕threadPoolDestroy(pool);return 0;
}
【4】运行结果:


......

相关文章:
线程池666666
1. 作用 线程池内部维护了多个工作线程,每个工作线程都会去任务队列中拿取任务并执行,当执行完一个任务后不是马上销毁,而是继续保留执行其它任务。显然,线程池提高了多线程的复用率,减少了创建和销毁线程的时间。 2…...
Python28-5 k-means算法
k-means 算法介绍 k-means 算法是一种经典的聚类算法,其目的是将数据集分成 ( k ) 个不同的簇,每个簇内的数据点尽可能接近。算法的基本思想是通过反复迭代优化簇中心的位置,使得每个簇内的点与簇中心的距离之和最小。k-means 算法的具体步骤…...
主流国产服务器操作系统技术分析
主流国产服务器操作系统 信创 "信创",即信息技术应用创新,作为科技自立自强的核心词汇,在我国信息化建设的进程中扮演着至关重要的角色。自2016年起步,2020年开始蓬勃兴起,信创的浪潮正席卷整个信息与通信技…...
【Linux】线程封装与互斥(万字)
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 目录 文章目录 前言 C多线程的用法 对原生线程进行一次封装 理解pthread线程 Linux线程互斥 进程线程间的互斥相关背景概念 互斥量mutex 操作共享变量会有问题的售票…...
5分钟教你部署MySQL8.0环境
此方法基于Windows操作系统! 一、在MySQL官网单击downloads(下载)MySQLhttps://www.mysql.com/cn/ 选择在Windows操作系统下载 二、选择合适的版本 推荐下载第二种,安装时离线安装即可 三、安装MySQL8.0 1、找到MySQL下载完成…...
LLM应用:传统NLP任务
LLM出来以后,知乎上就出现了“传统NLP已死”的言论,但是传统NLP真的就被扔进历史的垃圾桶了吗? 其实,尽管LLM具有出色的通用能力,但仍然无法有效应对低资源领域的自然语言处理任务,如小语种翻译。为了更好地…...
基于Hadoop平台的电信客服数据的处理与分析③项目开发:搭建Kafka大数据运算环境---任务11:基础环境准备
任务描述 任务主要是安装配置基础环境,主要内容包括: 1、安装java Kafka和ZooKeeper都需要安装Java环境,推荐至少Java8及以上版本 2、安装ZooKeeper ZooKeeper是Kafka集群的必要组件 3、安装kafka Kafka版本包括使用的scala语言版本和kafka版…...
Golang中swtich中如何强制执行下一个代码块
switch 语句中的 case 代码块会默认带上 break,但可以使用 fallthrough 来强制执行下一个 case 代码块。 package mainimport ("fmt" )func main() {isSpace : func(char byte) bool {switch char {case : // 空格符会直接 break,返回 false…...
读书笔记-Java并发编程的艺术-第4章(Java并发编程基础)-第2节(启动和终止线程)
文章目录 4.2 启动和终止线程4.2.1 构造线程4.2.2 启动线程4.2.3 理解中断4.2.4 过期的suspend()、resume()和stop()4.2.5 安全地终止线程 4.2 启动和终止线程 在前面章节的示例中通过调用线程的start()方法进行启动,随着run()方法的执行完毕,线程也随之…...
通俗大白话理解Docker
什么是Docker Docker本质上是一种容器化技术,用于将应用程序及其所有依赖打包到一个标准化的单元中。这些单元(容器)可以在任何运行Docker的机器上运行。每个容器是相互隔离的,具有自己的文件系统、网络和进程空间。 以下是大白话…...
题解:CF1981C(Turtle and an Incomplete Sequence)
题解:CF1981C(Turtle and an Incomplete Sequence) Part 1:题意理解 地址链接:CF、洛谷。题面翻译:给定一个长度为 n n n 的序列 a a a,其中有一些元素未知,用 − 1 -1 −1 表示…...
Swift 中强大的 Key Paths(键路径)机制趣谈(上)
概览 小伙伴们可能不知道:在 Swift 语言中隐藏着大量看似“其貌不扬”实则却让秃头码农们“高世骇俗”,堪称卧虎藏龙的各种秘技。 其中,有一枚“不起眼”的小家伙称之为键路径(Key Paths)。如若将其善加利用ÿ…...
(十二)纹理和采样
纹理 在绘制三角形的过程中,将图片贴到三角形上进行显示的过程,就是纹理贴图的过程 uv坐标 如果如果图片尺寸和实际贴图尺寸不一致,就会导致像素不够用了的问题 纹理与采样 纹理对象(Texture):在GPU端,用来以一…...
QT创建地理信息shp文件编辑器shp_editor
空闲之余创建一个简单的矢量shp文件编辑器,加深对shp文件的理解。 一、启动程序 二、打开shp文件 三、显示shp文件的几何图形 四、双击右边表格中的feature,主窗体显示选中feature的各个节点。 五、鼠标在主窗体中选中feature的节点,按鼠标左…...
解析Kotlin中扩展函数与扩展属性【笔记摘要】
1.扩展函数 1.1 作用域:扩展函数写的位置不同,作用域就也不同 扩展函数可以写成顶层函数(Top-level Function),此时它只属于它所在的 package。这样你就能在任何类里使用它: package com.rengwuxianfun …...
【Java学习笔记】java图形界面编程
在前面的章节中,我们开发运行的应用程序都没有图形界面,但是很多应用软件,如Windows下的Office办公软件、扑克牌接龙游戏软件、企业进销存ERP系统等,都有很漂亮的图形界面。素以需要我们开发具有图形界面的软件。 Java图形界面编程…...
STM32入门笔记(03): ADC(SPL库函数版)(2)
A/D转换的常用技术有逐次逼近式、双积分式、并行式和跟踪比较式等。目前用的较多的是前3种。 A/D转换器的主要技术指标 转换时间 分辨率 例如,8位A/D转换器的数字输出量的变化范围为0~255,当输入电压的满刻度为5V时,数字量每变化…...
2024年7月2日 (周二) 叶子游戏新闻
老板键工具来唤去: 它可以为常用程序自定义快捷键,实现一键唤起、一键隐藏的 Windows 工具,并且支持窗口动态绑定快捷键(无需设置自动实现)。 卸载工具 HiBitUninstaller: Windows上的软件卸载工具 经典名作30周年新篇《恐怖惊魂夜…...
如何使用Spring Boot Profiles进行环境配置管理
如何使用Spring Boot Profiles进行环境配置管理 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天我们将深入探讨如何利用Spring Boot Profiles来管理不同环境…...
Java错题归纳(二)
1、若有如下接口A的定义,下列哪些类下确实现了该接口:C interface A { void method1(int i); void method2(int j); } A class B implements A{ void method1( ) { } void method2( ) { } } B class B implements A { void method1(int i ) { }…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...
算法:模拟
1.替换所有的问号 1576. 替换所有的问号 - 力扣(LeetCode) 遍历字符串:通过外层循环逐一检查每个字符。遇到 ? 时处理: 内层循环遍历小写字母(a 到 z)。对每个字母检查是否满足: 与…...
基于SpringBoot在线拍卖系统的设计和实现
摘 要 随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统,主要的模块包括管理员;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...
Golang——7、包与接口详解
包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...
windows系统MySQL安装文档
概览:本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容,为学习者提供全面的操作指导。关键要点包括: 解压 :下载完成后解压压缩包,得到MySQL 8.…...
上位机开发过程中的设计模式体会(1):工厂方法模式、单例模式和生成器模式
简介 在我的 QT/C 开发工作中,合理运用设计模式极大地提高了代码的可维护性和可扩展性。本文将分享我在实际项目中应用的三种创造型模式:工厂方法模式、单例模式和生成器模式。 1. 工厂模式 (Factory Pattern) 应用场景 在我的 QT 项目中曾经有一个需…...
使用SSE解决获取状态不一致问题
使用SSE解决获取状态不一致问题 1. 问题描述2. SSE介绍2.1 SSE 的工作原理2.2 SSE 的事件格式规范2.3 SSE与其他技术对比2.4 SSE 的优缺点 3. 实战代码 1. 问题描述 目前做的一个功能是上传多个文件,这个上传文件是整体功能的一部分,文件在上传的过程中…...
32单片机——基本定时器
STM32F103有众多的定时器,其中包括2个基本定时器(TIM6和TIM7)、4个通用定时器(TIM2~TIM5)、2个高级控制定时器(TIM1和TIM8),这些定时器彼此完全独立,不共享任何资源 1、定…...
