当前位置: 首页 > news >正文

new bing的chatGPT如何解析英文论文pdf

昨天我的new bing申请下来了,有了聊天的界面:

但是解析pdf的英文文献,还是不行,没有对话窗口。就问了一下chatGPT,方案如下:

要使用New Bing解析PDF文献,你需要以下几个步骤:

1,申请加入new bing的等待名单,等待邮箱通知
2,收到new bing的邀请通知
3,安装Edge 开发者12版本:Edge DEV
4,用Edge DEV打开pdf,打开对话窗口,就可以沟通了。

下面结合我的经验,介绍一下相关步骤。

1. 申请new bing的waitlist名单

详见我的文章:

如何使用微软bing的chatGPT

注意:

  • 不要用126,163,qq邮箱,可以用outlook和gmail邮箱
  • 注册后,会收到一封邮件
  • 要12~15天左右才能收到确认邮件

2. 收到new bing的邀请通知

详见我的文章:

过了!!!我可以用new bing的chatGPT了

用了12天收到的确认邮件:

3. 安装Edge Dev版本才能解析pdf文献

下载地址:https://www.microsoftedgeinsider.com/en-us/download/dev

安装一下,打开界面如下,右上角有个图标:

4. 用Edge Dev打开英文pdf文献

比如,这里打开一篇水产的英文文献pdf


选择浏览器右上角的图标,进入对话框:

5. 开始询问

5.1 这篇文章主要内容介绍

您好,这是必应。这篇文章的主要内容是利用单步基因组最佳线性无偏预测(ssGBLUP)方法来提高巨型淡水虾(Macrobrachium rosenbergii)体重的遗传评估效率。文章使用了410个基因分型的亲本和83,480个单核苷酸多态性(SNP)位点来估计体重的方差成分和遗传参数,并通过五折交叉验证(CV)来计算遗传值(EBV)和基因组遗传值(GEBV)的预测准确度。文章发现,使用ssGBLUP方法比使用传统的基于谱系的pBLUP方法可以提高体重GEBV的预测准确度和选择反应,并且可以更准确地反映亲本之间的亲缘关系。

5.2 这篇文章用的是什么方法

这篇文章用的是单步基因组最佳线性无偏预测(ssGBLUP)方法。这是一种结合了基于谱系的pBLUP方法和基于分子标记的GBLUP方法的遗传评估方法。它可以利用少量的基因分型数据和大量的表型数据来构建一个更准确的亲缘关系矩阵H,从而提高遗传值和基因组遗传值的预测准确度和选择反应。

您想了解更多关于ssGBLUP方法的原理或步骤吗?

5.3 请问ssGBLUP方法有什么优势或局限性

ssGBLUP是一种基于基因组和谱系信息的单步最佳线性无偏预测方法,用于动物育种中的遗传评估和选择。ssGBLUP方法有以下优势和局限性:

优势:ssGBLUP可以利用高密度SNP标记来构建更准确的亲缘关系矩阵,从而提高遗传参数的估计精度和育种值的预测准确度1234。ssGBLUP还可以利用不同权重的SNP标记来进行基因组广泛关联分析(GWAS),从而发现与目标性状相关的SNP位点。ssGBLUP还可以适用于任何类型的群体,包括有或无谱系信息、有或无基因组信息、有或无近交等。

局限性: ssGBLUP需要大量的计算资源和时间来处理大规模的数据集,尤其是当亲缘关系矩阵非常稠密时3。ssGBLUP还需要对SNP标记进行质量控制和过滤,以避免引入噪声和偏差。ssGBLUP还可能受到群体结构、选择历史、遗传漂变等因素的影响,从而降低预测效果。
希望这些信息对您有所帮助。

会给出一个参考文献:
在这里插入图片描述

5.4 文章主要是使用什么软件,什么参数实现的

文章中使用了单步基因组最佳线性无偏预测(ssGBLUP)方法来估计遗传参数和预测遗传增益。ssGBLUP方法是一种利用高密度基因型数据进行遗传评估的流行方法1。文章中使用了动物模型,结合SNP标记和家系数据构建的关系矩阵H或者只用家系数据构建的关系矩阵A来估计方差组分。文章中没有提到具体使用的软件和参数,但根据其他文献23,可能使用的软件有BLUPF90、ASReml、WOMBAT等,可能使用的参数有SNP标记数目、交叉验证次数、选择强度等。

ASReml是一种用于拟合线性混合模型的软件,可以处理大规模的数据和复杂的方差协方差结构1。ASReml的实现方法主要是基于平均信息算法(AI),利用似然函数和其一阶和二阶导数来估计参数2。ASReml有两种参数化方式,一种是基于比例(gamma)的,另一种是基于分量(sigma)的,具体取决于残差模型的设定2。ASReml还有一个R语言接口(ASReml-R),可以在R环境中进行数据处理、分析和输出管理

5.5 文章中遗传进展是如何计算的

遗传进展是指在一定的选择压力下,一个群体的遗传水平随着世代的变化而发生的改变1。文章中遗传进展是用选育值或基因选育值(EBV或GEBV)的差异来计算的。选育值或基因选育值是指一个个体对后代表现的预期贡献,它可以用线性混合模型来估计2。文章中使用了五折交叉验证法(CV)来评估选育值或基因选育值的准确性,然后根据不同世代之间的平均选育值或基因选育值的差异来计算遗传进展。

6. 结论

  • new bing可以翻译论文中的内容或者段落,准确性较高
  • 可以针对某个方法或者内容进行交流
  • new bing会给出相关的参考文献
  • 可以对某个概念或者方法进行拓展

对于阅读文献,可以加快速度,加深理解,加强关联。

利器!!!

相关文章:

new bing的chatGPT如何解析英文论文pdf

昨天我的new bing申请下来了,有了聊天的界面: 但是解析pdf的英文文献,还是不行,没有对话窗口。就问了一下chatGPT,方案如下: 要使用New Bing解析PDF文献,你需要以下几个步骤: 1&a…...

学会这12个Python装饰器,让你的代码更上一层楼

学会这12个Python装饰器,让你的代码更上一层楼 Python 装饰器是个强大的工具,可帮你生成整洁、可重用和可维护的代码。某种意义上说,会不会用装饰器是区分新手和老鸟的重要标志。如果你不熟悉装饰器,你可以将它们视为将函数作为输…...

企业使用ERP的好处

ERP系统是企业管理信息系统的简称,它是以信息技术为手段,以物流、资金流、信息流为主线,以企业的核心业务流程为对象,建立的一套适用于企业管理的、高效的企业管理信息系统。它是通过科学方法和计算机信息技术,将企业运…...

【QT】如何获取屏幕(桌面)的大小或分辨率

目录1. QDesktopWidget 获取系统屏幕大小2. QScreen 获取系统屏幕大小3. geometry() 与 availableGeometry() 的区别1. QDesktopWidget 获取系统屏幕大小 QDesktopWidget 提供了详细的位置信息,其能够自动返回窗口在用户窗口的位置和应用程序窗口的位置 QDesktopW…...

ETL工具的选择

正确选择 ETL 工具,可以从 ETL 对平台的支持、对数据源的支持、数据转换功能、管理 和调度功能、集成和开放性、对元数据管理等功能出发,具体如下。 支持平台 随着各种应用系统数据量的飞速增长和对业务可靠性等要求的不断提高,人们对数据抽…...

SpringBoot仿天猫商城java web购物网站的设计与实现

1,项目介绍 基于 SpringBoot 的仿天猫商城拥有两种角色,分别为管理员和用户。 迷你天猫商城是一个基于SSM框架的综合性B2C电商平台,需求设计主要参考天猫商城的购物流程。 后端页面兼容IE10及以上现代浏览器,Chrome,Edge,Firebox…...

C#基础教程22 文件的输入与输出

C# 文件的输入与输出 一个 文件 是一个存储在磁盘中带有指定名称和目录路径的数据集合。当打开文件进行读写时,它变成一个 流。 从根本上说,流是通过通信路径传递的字节序列。有两个主要的流:输入流 和 输出流。输入流用于从文件读取数据(读操作),输出流用于向文件写入数…...

Ubuntu18.04 python 开发usb通信

一、安装环境 1.安装pip sudo python3 get-pip.py 或 sudo -i apt update apt install python3-pip 确定pip是否安装成功: xxx-desktop:~$ pip3 --versionpip 9.0.1 from /usr/lib/python3/dist-packages (python 3.6)2.安装pyusb pip3 install pyusb --use…...

RabbitMq 消息确认机制详解 SpringCloud

1 消息可靠性 消息从发送,到消费者接收,会经理多个过程,其中的每一步都可能导致消息丢失. #### 2 常见的丢失原因 发送时丢失: 生产者发送的消息未送达exchange 消息到达exchange后未到达queueMQ宕机,queue将消息丢失 consumer…...

后台导航布局

五、后台导航实例 参考链接: 页面后台导航制作 如何实现html后台导航iframe点击换url(代码) 如何消除html页面下边和右边的滚动条 html页面有多个滚动条时的优化 页面出现不必要的滚动条,怎么调试? 一个页面有两…...

设计模式——抽象工厂模式(创建型)

一、介绍抽象工厂模式是一种创建型设计模式, 它能创建一系列相关的对象, 而无需指定其具体类。问题假设你正在开发一款家具商店模拟器。 你的代码中包括一些类, 用于表示:一系列相关产品, 例如 椅子Chair 、 沙发Sofa和…...

Java面试题--SpringMVC的执行流程

概要 SpringMVC是一种基于MVC(Model-View-Controller)框架的Web应用开发框架。下面是SpringMVC的详细执行流程。 客户端向DispatcherServlet发送请求。DispatcherServlet收到请求后,根据HandlerMapping(处理器映射)找…...

c# 32位程序突破2G内存限制

起因 在开发过程中,由于某些COM组件只能在32位程序下运行,程序不得不在X86平台下生成。而X86的32位程序默认内存大小被限制在2G。由于程序中可能存在大数量处理,期间对象若没有及时释放或则回收,内存占用达到了1.2G左右&#xff…...

【C语言】指针详解总结

指针1. 指针是什么2. 指针和指针类型2.1 指针-整数2.2 指针的解引用3. 野指针3.1 野指针成因3.2 如何规避野指针4. 指针运算4.1 指针-整数4.2 指针-指针4.3 指针的关系运算5. 指针和数组6. 二级指针7. 指针数组1. 指针是什么 指针是什么? 指针理解的2个要点&#xf…...

Java加解密(八)工具篇

目录Java加解密实用工具1 OpenSSL2 Keytool3 XCA4 KeyStore ExplorerJava加解密实用工具 1 OpenSSL OpenSSL是一个开放源代码的软件库包,应用程序可以使用这个包来进行安全通信,避免窃听,同时确认另一端连接者的身份。 例如Apache 使用它加…...

Go框架三件套(Web/RPC/ORM)

🧡 三件套介绍 Gorm Gorm 是一个已经迭代了10年的功能强大的 ORM 框架,在字节内部被广泛使用并且拥有非常丰富的开源扩展。 Kitex Kitex 是字节内部的 Golang 微服务 RPC 框架,具有高性能、强可扩展的主要特点,支持多协议并且拥有…...

HR问:假如公司给不到你期望的薪资怎么办?这个问题该如何体面地回答?

对大多数人而言,跳槽就是为了涨薪,工作就是为了挣钱。但如果面试时hr问:假如公司给不到你期望的薪资呢?面对这种问题,该怎么回答才体面?来看一波网友的机智回答:有人委婉拒绝,说“愿…...

LearnOpenGL-高级OpenGL-2.模板测试

本人刚学OpenGL不久且自学,文中定有代码、术语等错误,欢迎指正 我写的项目地址:https://github.com/liujianjie/LearnOpenGLProject 文章目录简单理解模板测试模板介绍模板函数物体轮廓介绍代码给加载的模型添加轮廓简单理解 同深度测试一样…...

【Git从入门到精通】Git入门

什么是版本控制 版本控制是一套系统,按时间记录某一个或一系列文件的变更,查看以前的特定版本。 使用版本控制系统,你可以将文件或者整个项目恢复到先前的状态,还可以对以前的文件进行对比。 本地版本控制系统 本地版本控制系…...

软件测试18

在桌面上打开终端窗口, 执行如下操作: 查看当前系统中开放的端口有哪些查看哪个程序正在使用 3306 端口(需要 root 用户权限) 注意: 1.某些端口号具备固定用途: 例如: 远程访问常用端口号:22 默认情况下是mysql使用的端口号&…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...

linux 下常用变更-8

1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...

C++ 设计模式 《小明的奶茶加料风波》

👨‍🎓 模式名称:装饰器模式(Decorator Pattern) 👦 小明最近上线了校园奶茶配送功能,业务火爆,大家都在加料: 有的同学要加波霸 🟤,有的要加椰果…...

【Android】Android 开发 ADB 常用指令

查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...

快速排序算法改进:随机快排-荷兰国旗划分详解

随机快速排序-荷兰国旗划分算法详解 一、基础知识回顾1.1 快速排序简介1.2 荷兰国旗问题 二、随机快排 - 荷兰国旗划分原理2.1 随机化枢轴选择2.2 荷兰国旗划分过程2.3 结合随机快排与荷兰国旗划分 三、代码实现3.1 Python实现3.2 Java实现3.3 C实现 四、性能分析4.1 时间复杂度…...

字符串哈希+KMP

P10468 兔子与兔子 #include<bits/stdc.h> using namespace std; typedef unsigned long long ull; const int N 1000010; ull a[N], pw[N]; int n; ull gethash(int l, int r){return a[r] - a[l - 1] * pw[r - l 1]; } signed main(){ios::sync_with_stdio(false), …...

云原生安全实战:API网关Envoy的鉴权与限流详解

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关 作为微服务架构的统一入口&#xff0c;负责路由转发、安全控制、流量管理等核心功能。 2. Envoy 由Lyft开源的高性能云原生…...