当前位置: 首页 > news >正文

.npy格式图像如何进行深度学习模型训练处理,亲测可行

import torchimport torch.nn as nnimport torch.nn.functional as Fimport numpy as npfrom torch.utils.data import DataLoader, Datasetfrom torchvision import transformsfrom PIL import Imageimport json# 加载训练集和测试集数据train_images = np.load('../dataset/train_image.npy')train_labels = np.load('../dataset/train_label_3.npy')test_images = np.load('../dataset/test_image.npy')test_labels = np.load('../dataset/test_label_3.npy')# 将one-hot编码的标签转换为整数索引train_labels = np.argmax(train_labels, axis=1)test_labels = np.argmax(test_labels, axis=1)# 确保图像数据是 uint8 类型train_images = (train_images * 255).astype(np.uint8)test_images = (test_images * 255).astype(np.uint8)# 定义数据集类class NumpyToPIL(object):def __call__(self, sample):return Image.fromarray(sample)class CustomImageDataset(Dataset):def __init__(self, images, labels, transform=None):self.images = imagesself.labels = labelsself.transform = transformdef __len__(self):return len(self.images)def __getitem__(self, idx):image = self.images[idx]label = self.labels[idx]if self.transform:image = self.transform(image)return image, label# 数据预处理和增强transform_train = transforms.Compose([NumpyToPIL(),transforms.Resize((224, 224)),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),])transform_test = transforms.Compose([NumpyToPIL(),transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),])# 创建数据集和数据加载器#BATCH_SIZE = 32dataset_train = CustomImageDataset(train_images, train_labels, transform=transform_train)dataset_test = CustomImageDataset(test_images, test_labels, transform=transform_test)train_loader = DataLoader(dataset_train, batch_size=BATCH_SIZE, num_workers=8, shuffle=True, drop_last=True)test_loader = DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)# 检查标签格式train_labels = train_labels.ravel()test_labels = test_labels.ravel()# 检查标签的唯一值,生成类别索引映射train_class_to_idx = {str(i): i for i in set(train_labels.tolist())}test_class_to_idx = {str(i): i for i in set(test_labels.tolist())}with open('train_class.txt', 'w') as file:file.write(str(train_class_to_idx))with open('train_class.json', 'w', encoding='utf-8') as file:file.write(json.dumps(train_class_to_idx))with open('test_class.txt', 'w') as file:file.write(str(test_class_to_idx))with open('test_class.json', 'w', encoding='utf-8') as file:file.write(json.dumps(test_class_to_idx))

相关文章:

.npy格式图像如何进行深度学习模型训练处理,亲测可行

import torchimport torch.nn as nnimport torch.nn.functional as Fimport numpy as npfrom torch.utils.data import DataLoader, Datasetfrom torchvision import transformsfrom PIL import Imageimport json# 加载训练集和测试集数据train_images np.load(../dataset/tra…...

XFeat快速图像特征匹配算法

XFeat(Accelerated Features)是一种新颖的卷积神经网络(CNN)架构,专为快速和鲁棒的像匹配而设计。它特别适用于资源受限的设备,同时提供了与现有深度学习方法相比的高速度和准确性。 轻量级CNN架构&#xf…...

普元EOS学习笔记-低开实现图书的增删改查

前言 在前一篇《普元EOS学习笔记-创建精简应用》中,我已经创建了EOS精简应用。 我之前说过,EOS精简应用就是自己创建的EOS精简版,该项目中,开发者可以进行低代码开发,也可以进行高代码开发。 本文我就记录一下自己在…...

动态住宅代理IP详细解析

在大数据时代的背景下,代理IP成为了很多企业顺利开展的重要工具。代理IP地址可以分为住宅代理IP地址和数据中心代理IP地址。选择住宅代理IP的好处是可以实现真正的高匿名性,而使用数据中心代理IP可能会暴露自己使用代理的情况。 住宅代理IP是指互联网服务…...

等保2.0 实施方案之信息软件验证要求

一、等保2.0背景及意义 随着信息技术的快速发展和网络安全威胁的不断演变,网络安全已成为国家安全、社会稳定和经济发展的重要保障。等保2.0(即《信息安全技术 网络安全等级保护基本要求》2.0版本)作为网络安全等级保护制度的最新标准&#x…...

【LeetCode的使用方法】

🎥博主:程序员不想YY啊 💫CSDN优质创作者,CSDN实力新星,CSDN博客专家 🤗点赞🎈收藏⭐再看💫养成习惯 ✨希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共同学习、交流进步! 🔮LeetCode的使用方法 🔮LeetCode 是一个在线编程平台,广泛…...

【SGX系列教程】(二)第一个 SGX 程序: HelloWorld,linux下运行

文章目录 0. SGX基础原理分析一.准备工作1.1 前提条件1.2 SGX IDE1.3 基本原理 二.程序设计2.1 目录结构2.2 源码设计2.2.1 Encalve/Enclave.edl:Enclave Description Language2.2.2 Enclave/Enclave.lds: Enclave linker script2.2.3 Enclave/Enclave.config.xml: Enclave 配置…...

网页报错dns_probe_possible 怎么办?——错误代码有效修复

当你在浏览网页时遇到dns_probe_possible 错误,这通常意味着你的浏览器无法解析域名系统(DNS)地址。这个问题可能是由多种原因引起的,包括网络配置问题、DNS服务问题、或是本地设备的问题。教大家几种修复网页报错dns_probe_possi…...

Vue.js 中属性绑定的详细解析:冒号 `:` 和非冒号的区别

Vue.js 中属性绑定的详细解析:冒号 : 和非冒号的区别 在 Vue.js 中,属性绑定是一个重要的概念,它决定了如何将数据绑定到 DOM 元素的属性上。Vue.js 提供了两种方式来绑定属性:使用冒号 : 进行动态绑定,或直接书写属性…...

使用Java实现智能物流管理系统

使用Java实现智能物流管理系统 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天我们将探讨如何使用Java语言实现智能物流管理系统,这是一个涉及到…...

深圳技术大学oj C : 生成r子集

Description 输出给定序列按字典序的 � 组合,按照所有 � 个元素出现与否的 01 标记串 ����−1,...,�1 的字典序输出. 此处01串的字典序指:先输入的数字对应低位&#x…...

不同操作系统下的换行符

1. 关键字2. 换行符的比较3. ASCII码4. 修改换行符 4.1. VSCode 5. 参考文档 1. 关键字 CR LF CRLF 换行符 2. 换行符的比较 英文全称英文缩写中文含义转义字符ASCII码值操作系统Carriage ReturnCR回车\r13MacIntosh(早期的Mac)LinefeedLF换行/新行\…...

Transformation(转换)开发-switch/case组件

一、switch/case组件-条件判断 体育老师要做一件非常重要的事情:判断学生是男孩还是女孩、或者是蜘蛛,然后让他们各自到指定的队伍中 体育老师做的事情,我们同样也会在Kettle中会经常用来。在Kettle中,switch/case组件可以来做类似…...

Android Gradle 开发与应用 (二): Android 项目结构与构建配置

目录 1. Android 项目的 Gradle 文件结构 1.1 项目根目录 1.2 模块目录 2. Gradle 构建配置详解 2.1 配置 Android 项目的 build.gradle 2.2 配置模块的 build.gradle 2.3 使用 productFlavors 管理多版本应用 2.4 使用 buildConfigField 注入构建常量 在 Android 开发…...

02:vim的使用和权限管控

vim的使用 1、vim基础使用1.1、vim pathname 2、vim高级用法2.1、查找2.2、设置显示行号2.3、快速切换行2.4、 行删除2.5、行复制粘贴 3、权限管理3.1、普通用户和特权用户3.2、文件权限表示 vim是Linux中的一种编辑器,类似于window中的记事本,可以对创建…...

GNeRF代码复现

https://github.com/quan-meng/gnerf 之前一直去复现这个代码总是文件不存在,我就懒得搞了(实际上是没能力哈哈哈) 最近突然想到这篇论文重新试试复现 一、按步骤创建虚拟环境安装各种依赖等 二、安装好之后下载数据,可以用Blen…...

EXCEL返回未使用数组元素(未使用值)

功能简介: 在我们工作中,需要在EXCEL表列出哪些元素(物品或订单)已经被使用了(或使用了多少次),哪些没有被使用。 当数量过于庞大时人工筛选或许不是好办法,我们可以借助公式&…...

系统调用简单介绍

概述 简单理解就是操作系统给我们提供的函数接口,当我们的程序需要执行一些只有操作系统才能完成的工作的时候,我们就要调用操作系统给我们提供的接口来实现这些功能,这些接口就是系统调用。 那什么样的操作是只有操作系统才能完成呢? 比如…...

Mac可以读取NTFS吗 Mac NTFS软件哪个好 mac ntfs读写工具免费

在跨操作系统环境下使用外部存储设备时,特别是当Windows系统的U盘被连接到Mac电脑时,常常会遇到文件系统兼容性的问题。由于Mac OS原生并不完全支持对NTFS格式磁盘的读写操作,导致用户无法直接在Mac上向NTFS格式的U盘或硬盘写入数据。下面我们…...

AI是否能够做决定

AI是在帮助开发者还是取代他们? 我认为AI功能虽然很强大,但是代替不了人,原因就在于人可以做决定,可以承担责任和后果,但是AI不能够为结果负责...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...

Java 语言特性(面试系列2)

一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

<6>-MySQL表的增删查改

目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表&#xf…...

【Oracle APEX开发小技巧12】

有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

🚀 C extern 关键字深度解析:跨文件编程的终极指南 📅 更新时间:2025年6月5日 🏷️ 标签:C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言🔥一、extern 是什么?&…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...