【深度解析】滑动窗口:目标检测算法的基石
标题:【深度解析】滑动窗口:目标检测算法的基石
目标检测是计算机视觉领域的一个核心任务,旨在识别图像中所有感兴趣的目标,并确定它们的位置和大小。滑动窗口方法作为目标检测中的一种传统技术,虽然在深度学习时代逐渐被更先进的方法所取代,但它的原理和实现依然是理解目标检测发展的重要基础。本文将详细介绍滑动窗口方法的工作原理、实现方式以及在现代算法中的演变。
1. 滑动窗口方法概述
滑动窗口方法是一种基于候选区域的目标检测技术。它通过在图像上滑动窗口,提取窗口内的特征并使用分类器判断窗口是否包含目标对象。
2. 滑动窗口的工作原理
滑动窗口在图像上以固定的步长移动,对于每个位置,提取该窗口内的特征向量,并用分类器进行分类,判断是否为目标对象。
3. 特征提取
在滑动窗口方法中,特征提取是关键步骤之一。传统方法中常用的特征有SIFT、HOG等。
# 假设使用OpenCV和sklearn的HOG特征描述符
import cv2
from sklearn.externals import joblibhog = joblib.load('scaler.pkl') # 加载预训练的HOG描述符和标准化器
window_size = (64, 128) # 定义窗口大小# 假设img是一个已经加载的图像
img_window = cv2.resize(img, window_size) # 调整窗口大小
features = hog.transform((img_window.astype('float32') / 255)) # 提取HOG特征
4. 分类器训练
使用提取的特征训练一个分类器,如SVM、随机森林等,以区分目标和非目标。
from sklearn.svm import SVC# 假设X_train和y_train是训练集特征和标签
clf = SVC(probability=True) # 使用概率估计
clf.fit(X_train, y_train) # 训练分类器
5. 应用分类器于滑动窗口
将训练好的分类器应用于图像上每个滑动窗口提取的特征。
import numpy as np# 假设img是一个已经加载的图像
window_step = (4, 4) # 定义步长
windows = np.lib.stride_tricks.sliding_window_view(img, window_size, steps=window_step)for window in windows:window_features = hog.transform(window.astype('float32') / 255)prediction = clf.predict(window_features)# 处理预测结果
6. 非极大值抑制
由于滑动窗口可能会产生大量重叠的预测框,使用非极大值抑制(NMS)来合并重叠的预测框。
def nms(boxes, probs, threshold):# 非极大值抑制实现pass
7. 多尺度检测
在不同尺度上应用滑动窗口,以检测不同大小的目标。
# 假设scale是一个尺度因子列表
for scale in scales:resized_img = cv2.resize(img, (int(img.shape[1] * scale), int(img.shape[0] * scale)))# 对缩放后的图像应用滑动窗口和分类器
8. 改进滑动窗口方法
尽管滑动窗口方法在计算上可能非常昂贵,但可以通过使用更高效的特征描述符、多任务学习等方法进行改进。
9. 滑动窗口与深度学习
现代目标检测算法,如R-CNN系列和YOLO,采用了深度学习技术,减少了滑动窗口的计算量,并提高了检测速度和准确性。
10. 滑动窗口方法的局限性
滑动窗口方法的主要局限性在于计算成本高和对窗口尺寸、步长的敏感性。
结语
滑动窗口方法作为目标检测领域的传统技术,虽然在深度学习时代逐渐被边缘化,但它的原理和实现依然是理解目标检测技术发展的重要基础。本文详细介绍了滑动窗口方法的工作原理和实现步骤,并通过代码示例展示了如何使用传统机器学习技术进行目标检测。希望本文能够帮助读者更好地理解目标检测的基本概念和实现方法。
本文深入探讨了滑动窗口方法在目标检测中的应用,从特征提取到分类器训练,再到非极大值抑制和多尺度检测,全面覆盖了滑动窗口方法的关键步骤。通过实际的代码示例,本文希望能够帮助读者掌握使用传统机器学习技术进行目标检测的技巧,并为进一步学习更先进的目标检测算法打下坚实的基础。
相关文章:
【深度解析】滑动窗口:目标检测算法的基石
标题:【深度解析】滑动窗口:目标检测算法的基石 目标检测是计算机视觉领域的一个核心任务,旨在识别图像中所有感兴趣的目标,并确定它们的位置和大小。滑动窗口方法作为目标检测中的一种传统技术,虽然在深度学习时代逐…...
约束:对于数据的限制
主键约束 主键约束:唯一约束非空约束,该字段上的数据不能重复且不能为null 注意:一张表必须有且只有一个主键 添加主键约束 -- 方式一(推荐) CREATE TABLE user(username VARCHAR(32) PRIMARY KEY,password VARCHAR(32),nick_name VARCHAR(3…...
【总线】AXI4第七课时:AXI的额外的控制信息(PROT和CACHE)
大家好,欢迎来到今天的总线学习时间!如果你对电子设计、特别是FPGA和SoC设计感兴趣,那你绝对不能错过我们今天的主角——AXI4总线。作为ARM公司AMBA总线家族中的佼佼者,AXI4以其高性能和高度可扩展性,成为了现代电子系统中不可或缺的通信桥梁…...
MAVEN 重新配置参考
【笔记04】下载、配置 MAVEN(配置 MAVEN 本地仓库)(MAVEN 的 setting.xml)-阿里云开发者社区 windows 系统环境变量 MAVEN_HOME 也可以改一下...
ByteTrack论文阅读笔记
目录 ByteTrack: Multi-Object Tracking by Associating Every Detection Box摘要INTRODUCTION — 简介BYTE算法BYTE算法用Python代码实现实验评测指标轻量模型的跟踪性能 总结SORT算法简介ByteTrack算法和SORT算法的区别 ByteTrack: Multi-Object Tracking by Associating Eve…...
LVS+Keepalived 高可用集群搭建实验
192.168.40.204lvs+keepalivedlvs-k1192.168.40.140lvs+keepalivedlvs-k2192.168.40.150nginx官方教程web-1192.168.40.151nginxepel阿里云源web-2Woo79 | LVS+Keepalived 高可用集群搭建 (图文详解小白易懂) doctor @yang | 生产环境必备的LVS+Keepalived ,超级详细的原理…...
代码随想三刷动态规划篇7
代码随想三刷动态规划篇7 198. 打家劫舍题目代码 213. 打家劫舍 II题目代码 337. 打家劫舍 III题目代码 121. 买卖股票的最佳时机题目代码 198. 打家劫舍 题目 链接 代码 class Solution {public int rob(int[] nums) {if(nums.length1){return nums[0];}if(nums.length2){…...
linux应用开发基础知识(八)——内存共享(mmap和system V)
mmap内存映射 内存共享定义 内存映射,简而言之就是将用户空间的一段内存区域映射到内核空间,映射成功后,用户对这段内存区域的修改可以直接反映到内核空间,同样,内核空间对这段区域的修改也直接反映用户空间。那么对…...
上海小程序开发需要进行定制开发吗?
随着互联网技术与移动设备的不断成熟,小程序也已普及到人们日常生活的方方面面。随着企业与互联网联结的愈发深入,小程序的开发可以为企业带来更高效的经营模式,降本增效。那么,上海小程序作为无需安装且开发门槛较低的应用&#…...
Qt开发 | qss简介与应用
文章目录 一、qss简介与应用二、QLineEdit qss介绍与使用三、QPushButton qss1.常用qss1.1 基本样式表1.2 背景图片1.3 图片在左文字在右 2.点击按钮弹出菜单以及右侧箭头样式设置3.鼠标悬浮按钮弹出对话框 四、QCheckBox qss妙用:实时打开关闭状态按钮五、QComboBo…...
模块一SpringBoot(一)
maven记得配置本地路径和镜像 IJ搭建 SpringIntiallizer--》将https://start.spring.io改成https://start.aliyun.com/ 项目结构 Spring有默认配置, application.properties会覆盖默认信息: 如覆盖端口号server.port8888...
C语言 | Leetcode C语言题解之第213题打家劫舍II
题目: 题解: int robRange(int* nums, int start, int end) {int first nums[start], second fmax(nums[start], nums[start 1]);for (int i start 2; i < end; i) {int temp second;second fmax(first nums[i], second);first temp;}retur…...
Linux LVS 负载均衡群集
在业务量达到一定量的时候,往往单机的服务是会出现瓶颈的。此时最常见的方式就是通过负载均衡来进行横向扩展。其中我们最常用的软件就是 Nginx。通过其反向代理的能力能够轻松实现负载均衡,当有服务出现异常,也能够自动剔除。但是负载均衡服…...
onTouch()与onTouchEvent()的区别
onTouch()和onTouchEvent()是Android中处理触摸事件的两个重要方法。它们用于不同的场景,并在事件分发机制中扮演不同的角色。以下是它们的详细区别和使用方法: onTouch() 方法 定义:onTouch(View v, MotionEvent event)是View.OnTouchList…...
计算机网络网络层复习题2
一. 单选题(共22题,100分) 1. (单选题)如果 IPv4 数据报太大,会在传输中被分片,对分片后的数据报进行重组的是( )。 A. 中间路由器B. 核心路由器C. 下一跳路由器D. 目的主机 我的答案: D:目的…...
[JS]面向对象ES6
class类 ES6是基于 class关键字 创建类 <script>// 1.定义类class Person {// 公有属性name// 公有属性 (设置默认值)age 18// 构造函数constructor(name) {// 构造函数的this指向实例化对象// 构造函数的作用就是给实例对象设置属性this.name name// 动态添加属性(不…...
ctfshow web sql注入 web242--web249
web242 into outfile 的使用 SELECT ... INTO OUTFILE file_name[CHARACTER SET charset_name][export_options]export_options:[{FIELDS | COLUMNS}[TERMINATED BY string]//分隔符[[OPTIONALLY] ENCLOSED BY char][ESCAPED BY char]][LINES[STARTING BY string][TERMINATED…...
发送微信消息和文件
参考:https://www.bilibili.com/video/BV1S84y1m7xd 安装: pip install PyOfficeRobotimport PyOfficeRobotPyOfficeRobot.chat.send_message(who"文件传输助手", message"你好,我是PyOfficeRobot,有什么可以帮助…...
数组-螺旋矩阵
M螺旋矩阵 ||(leetcode59) /*** param {number} n* return {number[][]}*/ var generateMatrix function(n) {const maxNum n * n;let curNum 1;const matrix new Array(n).fill(0).map(() > new Array(n).fill(0));let row 0,column 0;const d…...
GitStack详细配置与使用指南
1.引言 GitStack是一个功能强大的Git服务器管理工具,专为Windows环境设计。它提供了一个用户友好的Web界面,使得在Windows服务器上管理Git仓库变得简单高效。本文将详细介绍GitStack的安装、配置和使用方法,帮助您快速搭建自己的Git服务器。 2.GitStack安装 2.1 系统要求 Wi…...
利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...
Chapter03-Authentication vulnerabilities
文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...
Linux简单的操作
ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...
高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...
自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...
ArcGIS Pro制作水平横向图例+多级标注
今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作:ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等(ArcGIS出图图例8大技巧),那这次我们看看ArcGIS Pro如何更加快捷的操作。…...
Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)
目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…...
【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...
