当前位置: 首页 > news >正文

Elasticsearch 第四期:搜索和过滤

 序

        2024年4月,小组计算建设标签平台,使用ES等工具建了一个demo,由于领导变动关系,项目基本夭折。其实这两年也陆陆续续接触和使用过ES,两年前也看过ES的官网,当时刚毕业半年多,由于历史局限性导致根本看不懂。因此趁着这个机会,在5月~6月期间,基本看了一遍ES的官方文档,先从整体梳理了ES的基础知识,共四期。

Elasticsearch 第一期:ES的前世今生-CSDN博客

Elasticsearch 第二期:基础的基础概念-CSDN博客

Elasticsearch 第三期:倒排索引,分析,映射-CSDN博客

Elasticsearch 第四期:搜索和过滤-CSDN博客

前言

这篇文章的内容是根据ES官方关于搜索的章节整理的。但目录结构做了重新整理。分别从相关性,搜索,过滤进行了介绍。具体如下:

相关性

ES搜索的本质其实是把文档根据搜索内容进行相关性排序。所以在介绍ES搜索之前,先简单介绍一下ES相关性。关于相关性的理论知识具体可以参考官网。当然相关性得分只是搜索排序的一种,还有特殊场景的排序方法,如地理位置邻近算法。

众所周知,查询语句会为每个文档生成一个评分: _score 。通常我们说的 相关性 是用来计算全文本字段的值相对于全文本检索词相似程度的算法。

Elasticsearch 的相似度算法被定义为:TF/IDF(检索词频率/反向文档频率) 。

检索词频率:检索词在该字段出现的频率。出现频率越高,相关性也越高。 字段中出现过 5 次要比只出现过 1 次的相关性高。

反向文档频率:每个检索词在全部索引中出现的频率。频率越高,计算相关时相关性的权重越低。检索词出现在多数文档中会比出现在少数文档中的权重更低。

字段长度准则:该字段的长度是多少。长度越长,相关性越低。 检索词出现在一个短的 title 要比同样的词出现在一个长的 content 字段权重更大。

检索词频率

title:dog love person

很明显,dog在第二个文档中出现了2次,因此文档2相关性更强

title:dog love dog

反向文档频率

title:dog love person

当使用dog和person来搜索时,虽然文档2被命中了2次,但person在全部文档中出现了频率比dog少,因此计算person相关性权重的时候会更大

title:dog love dog

字段长度准则

title:dog love person

搜索love时可以名字两个文档,但文档2中的字段相对较短,其得分更高。

title:dog love dog

搜索

搜索的过程就是在全文字段中搜索到最相关的文档。搜索两个最重要的方面是:

相关性(Relevance)它是评价查询与其结果间的相关程度,并根据这种相关程度对结果排名的一种能力

分析(Analysis)它是将搜索关键字和文档内容转换为有区别的、规范化的 词项(token) 的一个过程。 目的是为了(a)创建倒排索引 (b)查询倒排索引。

在Elasticsearch 7.x中,它提供了三种主要的文档检索方式:全文搜索、词项搜索和复合搜索。

全文搜索

简单查询

全文搜索是Elasticsearch最常见的搜索方式,主要用于搜索文本字段。用户只需要提供关键词,Elasticsearch就能自动地在索引中找到包含这些关键词的文档。在全文搜索中,Elasticsearch使用了一种名为“倒排索引”的数据结构,可以非常高效地执行搜索操作。

全文搜索主要通过match查询实现。match查询会对用户给出的关键词进行解析,然后进行分词处理。只要查询语句中的任意一个词项在文档中被匹配,该文档就会被检索到。

全文搜索经常用的命令包括:

match

匹配查询,用于单字段搜索

multi_match

在多个字段上反复执行相同查询

match
{"query": {"match": {"title":{"query":"BROWN DOG!","operator":and  //所有词项都要匹配时"minimum_should_match":"50%"}}}
}

上面是match搜索的一个用例。搜索内容可以是一个词项,也可以是多个词项。若是多个词项场景,这些词语会被解析成单个词,然后在倒序索引中进行精确(term)查找。默认是这些词之间的关系是or,即满足文档中包含其中一个词就会被找到。

match有两个参数来控制搜索操作和返回结果。

  1. operator:需要搜索的关键词必须全部出现

  2. minimum_should_match :最小匹配参数

有时候需要搜索的关键词必须全部出现,可以使用参数 operator ,设置为 and 。

若文档数量超多,可以对相关性设定阈值,而我们只希望返回相关性高的文档, 可以使用 minimum_should_match 最小匹配参数。该参数的值设置有两种方式,指定必须匹配的词项数用来表示一个文档是否相关。具体数值可以参考:

1. 设置为某个具体数字来制定匹配的词项数量

2. 将其设置为一个百分数:百分数可以设置为正值(75%)也可以设置为负值(-25%)。计算必须文档中要匹配的词项数量

75%

-25%

4个搜索关键词

4*75%=3

4-4*25%=3

4个搜索关键词

5*75%=3(向下取整)

5-5*25%=4(向下取整)

multi_match

multi_match 则是match在多字段查到的一个简便方式。可以在能在多个字段上反复执行相同查询。

{"query":{"multi_match": {"query": "BROWN DOG","fields":["title","body"]}}

短语近似匹配

简单查询中match 或者multi_match查询可以获得包含查询词条的文档。但搜索查询时没有考虑词语之间的关系(如:位置关系,词性关系),甚至都不能确定匹配到的内容是否来自同一个字段。

1. Java是一门很好的语言,很多工程师都喜欢使用.

2. Java工程师都很优秀.

用 match 搜索 Java 工程师 上面的两个文档都会得到匹配,但很明显,其实文档2是我们需要的可能性更大。

当使用分析器将文档内容和搜索关键词进行分词之后,理解分词之间的关系是一个复杂的难题。我们也无法通过更换查询方式或者底层存储结构来解决分词问题。但我们至少可以通过出现在彼此附近或者相邻的分词来判断分词之间的相关性

这就是短语匹配或者近似匹配的所属领域。对于短语匹配,match_phrase也是经常用的搜索方式之一。例如下面的例子:

{"query": {"match_phrase": {"title": {"query":"quick brown fox","slop":2}}}
}

对于与matchmulti_match查询不同的是,除了将查询关键字解析成一个词项,然后在倒排索引中进行搜索查询外,match_phrase还会比较快搜索词项之间的位置,最终结果只会保留 位置 与搜索词项相同的文档。 

精确短语匹配 或许是过于严格了。也许我们想要包含 “Java 高级 工程师” 的文档也能够匹配 “Java 工程师,” ,可以通过使用 slop 参数将灵活度引入短语匹配中。

slop 参数告诉 match_phrase 查询词条相隔多远时仍然能将文档视为匹配 。 相隔多远的意思是为了让查询和文档匹配你需要移动词条多少次。

词项搜索

词项搜索与全文搜索不同,查询不会对输入进行分词处理,而是将输入作为一个整体进行搜索。词项搜索方式本文整理了精确查找--term和部分匹配搜索。

精确查找和范围查找

我们首先来看最为常用的 term 查询和range查询。正如上面所说,词项搜索不会对输入进行分词处理,而是将输入作为一个整体,在倒排索引中查找准确的词项。term和range一般适用于用来处理数字(numbers)、布尔值(Booleans)、日期(dates)等。

term

查询某个字段等于搜索词的文档

"term":{ "address":"香港"}

查询地址等于'香港'的文档 

terms

查询某个字段里包含多个关键词的文档

terms":{   "address":["香港","北京"]}

查询地址等于"香港"或"北京"的

range

实现范围查询

"range": {             "age": {                 "from": 18,                 "to": 28,                 "include_lower": true,                 "include_upper": true             }         }

部分匹配

可以发现,以上提出的搜索查询方式都是针对倒排索引整个词的操作。即根据词项在倒排索引中进行匹配查找。也就是说只能查找倒排索引中存在的词,最小的单元为单个词。

但如果想匹配倒排索引中存在词项一部分, 如搜索Java的时候,也希望把JavaScript查出来。这个时候怎么办呢?这个便是接下来要解释的内容--部分匹配。

 部分匹配 允许用户指定查找词的一部分并找出所有包含这部分片段的结果。默认状态下, 部分匹配默认不做相关度评分计算,它只是将所有匹配的文档返回。部分匹配有三种方式,这三种方式也不会对搜索词进行分词:

  1. 前缀查询

  2. 通配符查询

  3. 正则表达式查询

prefix

不会在搜索之前分析查询字符串,它假定传入前缀就正是要查找的前缀。

"prefix": {"postcode": "W1"}

wildcard

使用标准的 shell 通配符查询: ? 匹配任意字符, * 匹配 0 或多个字符

"wildcard": {

            "postcode": "W?F*HW" ,

            "postcode": "W[0-9].+" }

regexp

正则式

{ "regexp": { "title": "br.*" }}

复合搜索

复合搜索是Elasticsearch中最强大的搜索方式之一,它允许用户组合多种查询条件,实现复杂的搜索需求。在Elasticsearch中,复合搜索主要通过bool查询实现。bool查询可以利用逻辑关系(如andornot)组合多个其他的查询,从而构建出复杂的查询条件。

除了bool查询,Elasticsearch还提供了其他一些复合查询方式,如filter查询、join查询等。这些查询方式可以进一步扩展复合搜索的能力,满足更复杂的搜索需求。

bool 过滤器一般由以下三部分组成:

{"bool" : {"must" :     [],"should" :   [],"must_not" : []}
}

must

 必须 匹配这些条件才能被包含进来。

must_not

 必须不 匹配这些条件才能被包含进来。

should

如果满足这些语句中的任意语句,将增加 _score ,否则,无任何影响。它们主要用于修正每个文档的相关性得分。

过滤

过滤和搜索不同,过滤不需要谈论相关性或得分。过滤得到的结果: 非是即否。它简单的对文档包括或排除处理。fliter可以单独使用,也可以结合bool复合搜索来实现功能更强大的操作。

Elasticsearch 会在运行过滤查询时执行多个操作,如执行下面语句时,Elasticsearch行为包含4步:

{ "filter":{"term":{"age": [3,63]},"term":{"price": 30}}
}
  1. 查找匹配文档.

term 查询在倒排索引中查找,获取包含该 term 的所有文档。

2. 创建 bitset.

过滤器会创建一个 bitset (一个包含 0 和 1 的数组),它描述了哪个文档会包含该 term 。匹配文档的标志位是 1 。如有四个文档,执行完"term":{"age": [3,63]}语句之后,会得到一个bitset 的值: [1,0,0,0] 。

3. 迭代 bitset(s)

一旦为每个查询生成了 bitsets ,Elasticsearch 就会循环迭代 bitsets 从而找到满足所有过滤条件的匹配文档的集合。一般来说先迭代稀疏的 bitset (因为它可以排除掉大量的文档)。

4. 增量使用计数.

Elasticsearch 能够缓存过滤查询从而获取更快的访问,而且过滤查询也不会计算相关行。因此,filter速度要快于query。

总结

本文先介绍了相关性的知识,然后从全文搜 索,词项搜索,复合搜索三方面来介绍了ES搜索的常见场景和操作。最后介绍了与搜索对应的过滤操作。

本文的内容意在梳理ES搜索操作,并未细究背后的原理,如相关性算法等。后续如果有需要会补充。当然,在实际应用中,要综合考虑具体场景来选择相应的搜索方式。

参考文档

https://www.cnblogs.com/qdhxhz/p/11493677.html

Elasticsearch 7.x文档检索的三大策略:全文搜索、词项搜索与复合搜索-百度开发者中心

相关文章:

Elasticsearch 第四期:搜索和过滤

序 2024年4月,小组计算建设标签平台,使用ES等工具建了一个demo,由于领导变动关系,项目基本夭折。其实这两年也陆陆续续接触和使用过ES,两年前也看过ES的官网,当时刚毕业半年多,由于历史局限性导…...

力扣1124.表现良好的最长时间段

力扣1124.表现良好的最长时间段 哈希表存最小的下标 当s[i] > 0 那么他到头可以构成一个合法时间段否则 找到之前的 s[i] - 1 的下标: 因为连续的前缀和一定只相差1若想算更小的s[i] - 2,s[i] - 3…一定会先算到s[i] - 1那么这些更小数必然在 s[i]−1 首次出现的…...

算法训练营day67

题目1&#xff1a; #include <iostream> #include <vector> #include <string> #include <unordered_set> #include <unordered_map> #include <queue>using namespace std;int main() {string beginStr, endStr;int n;cin >> n;ci…...

人工智能--图像语义分割

个人主页&#xff1a;欢迎来到 Papicatch的博客 课设专栏 &#xff1a;学生成绩管理系统 专业知识专栏&#xff1a;专业知识 ​ 文章目录 &#x1f349;引言 &#x1f349;介绍 &#x1f348;工作原理 &#x1f34d;数据准备 &#x1f34d;特征提取 &#x1f34d;像素分…...

fl studio20和21用哪一个好?FL-Chan from FL Studio欣赏

最近接到很多小伙伴的私信&#xff0c;都在问我平时会使用哪些音乐软件&#xff0c;能不能给一些参考。其实每个人的使用习惯不一样&#xff0c;需求也不一样。以DAW为例&#xff0c;有些人就是喜欢FL Studio&#xff0c;有些人吹爆Studio One&#xff0c;还有些人习惯使用Cuba…...

OpenCV直方图计算函数calcHist的使用

操作系统&#xff1a;ubuntu22.04OpenCV版本&#xff1a;OpenCV4.9IDE:Visual Studio Code编程语言&#xff1a;C11 功能描述 图像的直方图是一种统计表示方法&#xff0c;用于展示图像中不同像素强度&#xff08;通常是灰度值或色彩强度&#xff09;出现的频率分布。具体来说…...

09 docker 安装tomcat 详解

目录 一、安装tomcat 1. tomcat镜像的获取 2. docker创建容器实列 3. 访问测试 404错误 4. 解决方案 5. 使用免修改版容器镜像 5.1. 运行实列的创建 5.2. 出现问题及解决&#xff1a; 6. 验证 OK 一、安装tomcat 1. tomcat镜像的获取 docker search tomcat #docker …...

44.实现管理HOOK点的链表对象

上一个内容&#xff1a;43.实现HOOK接管寄存器数据 以 43.实现HOOK接管寄存器数据 它的代码为基础进行修改 首先创建一个类 这里创建的名为HOOKPOINT.h HOOKPOINT.cpp文件里面的内容 #include "pch.h" #include "HOOKPOINT.h"HOOKPOINT::HOOKPOINT() {…...

Unity小知识

1.当我们把摄像机的内容渲染到RenderTexture上而不是屏幕上时,那么相机的Aspect默认会设置成和RenderTexture的分辨率一样.不过最终如果把RenderTexture作为贴图贴到模型上去的时候还是会被UV拉伸和缩小的。 2.要想自定义UnityPackage的内容&#xff0c;只要找到UnityProject/L…...

【Jupyter Notebook与Git完美融合】在Notebook中驾驭版本控制的艺术

标题&#xff1a;【Jupyter Notebook与Git完美融合】在Notebook中驾驭版本控制的艺术 Jupyter Notebook是一个流行的开源Web应用程序&#xff0c;允许用户创建和共享包含实时代码、方程、可视化和解释性文本的文档。而Git是一个广泛使用的分布式版本控制系统&#xff0c;用于跟…...

Python开发者必看:内存优化的实战技巧

更多Python学习内容&#xff1a;ipengtao.com Python是一种高级编程语言&#xff0c;以其易读性和强大的功能而广受欢迎。然而&#xff0c;由于其动态类型和自动内存管理&#xff0c;Python在处理大量数据或高性能计算时&#xff0c;内存使用效率可能不如一些低级语言。本文将介…...

Golang | Leetcode Golang题解之第214题最短回文串

题目&#xff1a; 题解&#xff1a; func shortestPalindrome(s string) string {n : len(s)fail : make([]int, n)for i : 0; i < n; i {fail[i] -1}for i : 1; i < n; i {j : fail[i - 1]for j ! -1 && s[j 1] ! s[i] {j fail[j]}if s[j 1] s[i] {fail[i…...

【ajax实战08】分页功能

本文章目标&#xff1a;点击上/下一页按钮&#xff0c;实现对应页面的变化 实现基本步骤&#xff1a; 一&#xff1a;保存并设置文章总条数 设置一个全局变量&#xff0c;将服务器返回的数据返回给全局变量 二&#xff1a;点击下一页&#xff0c;做临界值判断&#xff0c;并…...

基于Hadoop平台的电信客服数据的处理与分析②项目分析与设计---需求分析-项目场景引入

任务描述 需求分析是软件生命周期中一个非常重要的过程&#xff0c;它决定着整个软件项目的质量&#xff0c;也是整个软件开发的成败所在。本环节任务是完成软件需求规格说明书。 知识点 &#xff1a;软件需求规格说明书的编写 重 点 &#xff1a;软件需求规格说明书内容的…...

debug-mmlab

mmyolo bug1: MMYOLO for yolov5 instance segmentation on balloon dataset getting this error "ValueError: Key img_path is not in available keys. solution: pip install albumentations1.3.1 reference...

年轻人为什么那么爱喝奶茶?

作者 | 艾泊宇 为什么年轻人那么爱喝奶茶&#xff1f;答案很简单&#xff1a;对他们来说&#xff0c;奶茶之于年轻人&#xff0c;正如白酒之于中年人。 奶茶不仅仅是一种饮料&#xff0c;它已经演化成一种文化现象&#xff0c;代表着温暖和爱的象征&#xff0c;甚至在某种程度上…...

手写数组去重

方法1-判断相邻元素 function _deleteRepeat(arr){if(!Array.isArray(arr)){throw new Error(参数必须是数组)}let res[];// 使用slice创建arr的副本&#xff0c;并排序let sortArrarr.slice().sort((a,b)>a-b);for(let i0;i<sortArr.length;i){if(isortArr.length-1||s…...

Firewalld 防火墙

1. 概述 在 RHEL7 系统中&#xff0c;firewalld 防火墙取代了传统的 iptables 防火墙。iptables 的防火墙策略是通过内核层面的 netfilter 网络过滤器来处理的&#xff0c;而 firewalld 则是通过内核层面的 nftables 包过滤框架来处理。firewalld 提供了更为丰富的功能和动态更…...

Hive查询优化 - 面试工作不走弯路

引言&#xff1a;Hive作为一种基于Hadoop的数据仓库工具&#xff0c;广泛应用于大数据分析。然而&#xff0c;由于其依赖于MapReduce框架&#xff0c;查询的性能可能会受到影响。为了确保Hive查询能够高效运行&#xff0c;掌握查询优化技巧至关重要。在日常工作中&#xff0c;高…...

【VUE3】uniapp + vite中 uni.scss 使用 /deep/ 不生效(踩坑记录三)

vite 中使用 /deep/ 进行样式穿透报错 原因&#xff1a;vite 中不支持&#xff0c;换成 ::v-deep 或:deep即可...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框&#xff0c;很难让人不联想到SQL注入&#xff0c;但提示都说了不是SQL注入&#xff0c;所以就不往这方面想了 ​ 先查看一下网页源码&#xff0c;发现一段JavaScript代码&#xff0c;有一个关键类ctfs…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

MVC 数据库

MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年&#xff0c;截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始&#xff0c;将英文题库免费公布出来&#xff0c;并进行解析&#xff0c;帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

零基础设计模式——行为型模式 - 责任链模式

第四部分&#xff1a;行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习&#xff01;行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想&#xff1a;使多个对象都有机会处…...

Java入门学习详细版(一)

大家好&#xff0c;Java 学习是一个系统学习的过程&#xff0c;核心原则就是“理论 实践 坚持”&#xff0c;并且需循序渐进&#xff0c;不可过于着急&#xff0c;本篇文章推出的这份详细入门学习资料将带大家从零基础开始&#xff0c;逐步掌握 Java 的核心概念和编程技能。 …...

C++使用 new 来创建动态数组

问题&#xff1a; 不能使用变量定义数组大小 原因&#xff1a; 这是因为数组在内存中是连续存储的&#xff0c;编译器需要在编译阶段就确定数组的大小&#xff0c;以便正确地分配内存空间。如果允许使用变量来定义数组的大小&#xff0c;那么编译器就无法在编译时确定数组的大…...

Ubuntu Cursor升级成v1.0

0. 当前版本低 使用当前 Cursor v0.50时 GitHub Copilot Chat 打不开&#xff0c;快捷键也不好用&#xff0c;当看到 Cursor 升级后&#xff0c;还是蛮高兴的 1. 下载 Cursor 下载地址&#xff1a;https://www.cursor.com/cn/downloads 点击下载 Linux (x64) &#xff0c;…...

QT开发技术【ffmpeg + QAudioOutput】音乐播放器

一、 介绍 使用ffmpeg 4.2.2 在数字化浪潮席卷全球的当下&#xff0c;音视频内容犹如璀璨繁星&#xff0c;点亮了人们的生活与工作。从短视频平台上令人捧腹的搞笑视频&#xff0c;到在线课堂中知识渊博的专家授课&#xff0c;再到影视平台上扣人心弦的高清大片&#xff0c;音…...

jdbc查询mysql数据库时,出现id顺序错误的情况

我在repository中的查询语句如下所示&#xff0c;即传入一个List<intager>的数据&#xff0c;返回这些id的问题列表。但是由于数据库查询时ID列表的顺序与预期不一致&#xff0c;会导致返回的id是从小到大排列的&#xff0c;但我不希望这样。 Query("SELECT NEW com…...