当前位置: 首页 > news >正文

【Python机器学习】模型评估与改进——在模型选择中使用评估指标

我们通常希望,在使用GridSearchCV或cross_val_score进行模型选择时能够使用AUC等指标。scikit-learn提供了一种非常简单的实现方法,那就是scoring参数,它可以同时用于GridSearchCV和cross_val_score。你只需要提供一个字符串,用于描述想要使用的评估指标。

举例,我们想用AUC分数对digits数据集中“9与其他”任务上的SVM分类器进行评估。想要将分数从默认值修改为AUC,可以提供‘roc_auc’作为scoring参数的值:

print('Default scoring:{}'.format(cross_val_score(SVC(),digits.data,digits.target==9)))
explicit_accuracy=cross_val_score(SVC(),digits.data,digits.target==9,scoring='accuracy')
print('explicit accuracy score:{}'.format(explicit_accuracy))
roc_auc=cross_val_score(SVC(),digits.data,digits.target==9,scoring='roc_auc')
print('AUC score:{}'.format(roc_auc))

类似的,我们可以改变GridSearchCV中用于选择最佳参数的指标

digits=load_digits()
y=digits.target==9
X_train,X_test,y_train,y_test=train_test_split(digits.data,y,random_state=0)
param_grid={'gamma':[0.0001,0.01,0.1,1,10]}
grid=GridSearchCV(SVC(),param_grid=param_grid)
grid.fit(X_train,y_train)
print('Grid-Search with accuracy')
print('最好参数:{}'.format(grid.best_params_))
print('最好精度(accuracy):{}'.format(grid.best_score_))
print('测试集AUC:{}'.format(roc_auc_score(y_test,grid.decision_function(X_test))))
print('测试集精度:{}'.format(grid.score(X_test,y_test)))

使用AUC评分来代替:

grid=GridSearchCV(SVC(),param_grid=param_grid,scoring='roc_auc')
grid.fit(X_train,y_train)
print('Grid-Search with AUC')
print('最好参数:{}'.format(grid.best_params_))
print('最好精度(accuracy):{}'.format(grid.best_score_))
print('测试集AUC:{}'.format(roc_auc_score(y_test,grid.decision_function(X_test))))
print('测试集精度:{}'.format(grid.score(X_test,y_test)))

在使用精度时,选择的参数是gamma=0.0001,而使用AUC时选择的事gamma=0.01,在两种情况下,交叉验证精度与测试集精度时一致的。但是使用AUC时,对应的AUC更高,甚至对应的精度也更高。

对于分类问题,scoring参数最重要的取值包括:accuracy(默认值,精度),roc_auc(ROC曲线下方的面积),average_precision(准确率-召回率曲线下方的面积)、f1、f1_marco、f1_mirco、f1_weighted(f_{1}分数及各种加权变体)。

对于回归问题,scoring参数最常用的取值包括:r2(R^{2}分数)、mean_squared_error(均方误差)和mean_absolute_error(平均绝对误差)。

相关文章:

【Python机器学习】模型评估与改进——在模型选择中使用评估指标

我们通常希望,在使用GridSearchCV或cross_val_score进行模型选择时能够使用AUC等指标。scikit-learn提供了一种非常简单的实现方法,那就是scoring参数,它可以同时用于GridSearchCV和cross_val_score。你只需要提供一个字符串,用于…...

【C语言】union 关键字

在C语言中,union关键字用于定义联合体。联合体是一种特殊的数据结构,它允许不同的数据类型共享同一段内存。所有联合体成员共享同一个内存位置,因此联合体的大小取决于其最大成员的大小。 定义和使用联合体 基本定义 定义一个联合体类型时…...

电脑回收站删除的文件怎么恢复?5个恢复方法详解汇总!

电脑回收站删除的文件怎么恢复?在我们日常使用电脑的过程中,难免会遇到误删文件的情况。一旦发现自己误删文件了,先不要着急,还是有很多方法可以找回的。市面上还是有很多好用的文件恢复软件可以使用,具体介绍如下。 本…...

mac 安装cnpm 淘宝镜像记录

mac 安装cnpm 淘宝镜像记录 本文介绍了在安装cnpm时遇到权限问题的解决方案,包括使用sudo,处理SSL证书过期,以及因版本不一致导致的错误处理方法,步骤包括设置npm配置、卸载和重新安装cnpm到特定版本。 安装 npm install cnpm …...

ArcGIS Pro SDK (七)编辑 11 撤销重做

ArcGIS Pro SDK (七)编辑 11 撤销&重做 文章目录 ArcGIS Pro SDK (七)编辑 11 撤销&重做1 撤消/重做最近的操作 环境:Visual Studio 2022 .NET6 ArcGIS Pro SDK 3.0 1 撤消/重做最近的操作 //撤销 if (MapV…...

Excel 中的元素定位:相对定位、绝对定位和混合定位

在Excel中,单元格引用有三种主要类型:相对定位、绝对定位和混合定位。 这些类型主要用于公式和函数中,决定在复制或拖动公式时引用如何变化。 1. 相对定位 相对定位指的是不带“$”符号的单元格引用,例如 A1。 这种引用方式在…...

Idea2024安装后点击无响应

问题 最近因工作需要,升级一下 idea 版本,之前一直使用的是2020版本,下载最新的2024版本(下载的 zip 包免安装模式,之前使用的2020版本也是免安装的,因为是免安装的,所以之前的版本也没有删除&…...

如何提高实验室分析结果的准确性呢

要提高实验室分析结果的准确性,可以从以下几个方面着手: 1、选择合适的实验方法 不同的实验方法具有不同的优缺点,实验方法的准确度直接影响测定结果的准确度。因此,在选择实验方法时,需要根据实验目的、实验原理、实…...

Perl 格式化输出:提升代码可读性的技巧

引言 Perl 是一种功能强大的脚本语言,广泛用于文本处理、系统管理、网络编程等多个领域。在 Perl 编程中,代码的格式化输出不仅有助于提升代码的可读性,还能增强程序的用户体验。本文将详细介绍如何在 Perl 中实现代码的格式化输出。 Perl …...

JavaScript基础-函数(完整版)

文章目录 函数基本使用函数提升函数参数arguments对象(了解)剩余参数(重点)展开运算符(...) 逻辑中断函数参数-默认参数函数返回值-return作用域(scope)全局作用域局部作用域变量的访问原则垃圾回收机制闭包 匿名函数函数表达式立即执行函数 箭头函数箭头…...

AI开发者的新选择:Mojo编程语言

随着人工智能技术的迅猛发展,编程语言的选择在AI项目的成功中扮演着至关重要的角色。近年来,Mojo编程语言作为一种专为AI开发者设计的新兴语言,逐渐引起了广泛关注。本文将详细介绍Mojo编程语言的特点、优势及其在AI开发中的应用。 目录 Mo…...

软考(高项)系统分析师--论软件开发模型及应用

文章目录 前言一、前期准备:二、论文部分: 前言 本文对系统分析师,软件开发模型及其应用文章进行展示,可以拷贝后直接粘贴到word 文档中。 一、前期准备: 项目主体功能项目背景常用的软件开发模型:瀑布模型&#xff…...

同一天提档又撤档!电影《野孩子》宣布取消7月10日公映安排——浔川电影报

同一天提档又撤档! 7月3日晚上10点,电影野孩子 发声明官宣撤档,“由于后期进度原因,电影《野孩子》将取消7月10日的公映安排,我们向各影管院线的同仁及所有观众朋友们致以最诚挚的歉意,谢谢大家这段时间的…...

Shell编程之免交互

一、Here Document免交互 1:概述 Here Document 是一个特殊用途的代码块,它在 Linux Shell 中使用 I/O 重定向的方式将命令列表提供给交互式程序或命令,比如 ftp、cat 或 read 命令,Here Document 是标准输入的一种替代品 语法…...

基于opencv的斜光测距及python实现

1.前言 最近做了一个基于opencv的斜光测距的小项目,东西不多,但是很有意思,值得拿出来学一学。项目里面需要比较精确的定位功能,将前人matlab代码移植到python上,并且做了一些优化,简化逻辑(毕竟我是专业的…...

梯度下降算法

占楼,明天写...

第5章:软件工程

第5章:软件工程 软件工程概述 软件生命周期 软件过程 1.能力成熟度模型(CMM) CMM(能力成熟度模型)是一个评估和确定组织软件过程成熟度的模型。它最早于1987年由美国国防部软件工程研究所(SEI)提出,其目的…...

cefsharp在splitContainer.Panel2中显示调试工具DevTools(非弹出式)含源代码

一、弹出式调试工具 (ShowDevTools) ChromiumWebBrowser webbrowser; public void showDevTools(){//定位到某元素webbrowser.ShowDevTools(null, parameters.XCoord, parameters.YCoord);...

nginx部署多个项目;vue打包项目部署设置子路径访问;一个根域名(端口)配置多个子项目

本文解决: vue打包项目部署设置子路径访问;nginx部署多个子项目;一个ip/域名 端口 配置多个子项目;配置后,项目能访问,但是刷新页面就丢失的问题 注:本文需要nginx配置基础。基础不牢的可见文…...

02-部署LVS-DR群集

1.LVS-DR工作原理 LVS-DR模式,Director Server作为群集的访问入口,不作为网购使用,节点Director Server 与 Real Server 需要在同一个网络中,返回给客户端的数据不需要经过Director Server 为了响应对整个群集的访问,…...

DataWhale-吃瓜教程学习笔记 (六)

学习视频**:第4章-决策树_哔哩哔哩_bilibili 西瓜书对应章节: 第五章 5.1;5.2;5.3 文章目录 MP 神经元- 感知机模型 (分类模型)-- 损失函数定义--- 感知机学习算法 - 随机梯度下降法 - 神经网络需要解决的问…...

在docker配置Nginx环境配置

应用于商业模式集中,对于各种API的调用,对于我们想要的功能进行暴露,对于不用的进行拦截进行鉴权。用于后面的付费 开发环境 正式上线模式 一、常用命令 停止:docker stop Nginx重启:docker restart Nginx删除服务&a…...

在不修改.gitignore的情况下,忽略个人文件的提交

Git提供了一个assume-unchanged命令&#xff0c;可以将文件标记为“假设未更改”。这意味着Git将忽略该文件的更改&#xff0c;不会将其提交到仓库中。要使用该命令&#xff0c;只需运行以下命令&#xff1a; git update-index --assume-unchanged <file>其中&#xff0…...

【Unity navmeshaggent 组件】

【Unity navmeshaggent 组件】 组件概述&#xff1a; NavMeshAgent是Unity AI系统中的一个组件&#xff0c;它允许游戏对象&#xff08;通常是一个角色或AI&#xff09;在导航网格&#xff08;NavMesh&#xff09;上自动寻路。 组件属性&#xff1a; Radius&#xff1a;导航…...

51单片机第18步_将TIM0用作13位定时器

本章重点学习将TIM0用作13位定时器。 1、定时器0工作在模式0框图 2、定时器0工作在模式0举例 1、Keil C51中有一些关键字&#xff0c;需要牢记&#xff1a; interrupt 0&#xff1a;指定当前函数为外部中断0&#xff1b; interrupt 1&#xff1a;指定当前函数为定时器0中断…...

构建现代医疗:互联网医院系统源码与电子处方小程序开发教学

本篇文章&#xff0c;笔者将探讨互联网医院系统的源码结构和电子处方小程序的开发&#xff0c;帮助读者更好地理解和掌握这些前沿技术。 一、互联网医院系统源码结构 互联网医院系统通常由多个模块组成&#xff0c;每个模块负责不同的功能。以下是一个典型的互联网医院系统的主…...

2024亚太赛(中文赛)数学建模竞赛选题建议+初步分析

提示&#xff1a;DS C君认为的难度&#xff1a;B<C<A&#xff0c;开放度&#xff1a;C<A<B。 综合评价来看 A题适合有较强计算几何和优化能力的团队&#xff0c;难度较高&#xff0c;但适用面较窄。 B题数据处理和分析为主&#xff0c;适合数据科学背景的团队…...

10 - Python文件编程和异常

文件和异常 在实际开发中&#xff0c;常常需要对程序中的数据进行持久化操作&#xff0c;而实现数据持久化最直接简单的方式就是将数据保存到文件中。说到“文件”这个词&#xff0c;可能需要先科普一下关于文件系统的知识&#xff0c;对于这个概念&#xff0c;维基百科上给出…...

AI绘画-Stable Diffusion 原理介绍及使用

引言 好像很多朋友对AI绘图有兴趣&#xff0c;AI绘画背后&#xff0c;依旧是大模型的训练。但绘图类AI对计算机显卡有较高要求。建议先了解基本原理及如何使用&#xff0c;在看看如何实现自己垂直行业的绘图AI逻辑。或者作为使用者&#xff0c;调用已有的server接口。 首先需…...

2024年过半,新能源车谁在掉链子?

2024年过半之际&#xff0c;各品牌上半年的销量数据也相继出炉&#xff0c;是时候考察今年以来的表现了。 理想和鸿蒙智行两大增程霸主占据头两名&#xff0c;仍处于焦灼状态&#xff1b;极氪和蔚来作为高端纯电品牌紧随其后&#xff0c;两者之间差距很小&#xff1b;零跑和哪…...