AI绘画 Stable Diffusion图像的脸部细节控制——采样器全解析
大家好,我是画画的小强
我们在运用AI绘画 Stable Diffusion 这一功能强大的AI绘图工具时,我们往往会发现自己对提示词的使用还不够充分。在这种情形下,我们应当如何调整自己的策略,以便更加精确、全面地塑造出理想的人物形象呢?举例来说,假设我们输入的是:
a girl in dress walks down a country road,vision,front view,audience oriented,
图片效果总是不尽人意
我们批量四个之后,除去背对的图片,我们可以看到其余三个的面部非常的奇怪
该如何快速处理呢?
原因分析
首先我们要了解脸部崩坏的原因
为什么在使用Stable Diffusion生成全身图像时,脸部细节往往不够精细?
-
问题一:图像分辨率和细节处理 在生成全身图像的过程中,模型会将计算资源集中于整个身体的描绘,包括服装、姿势和背景等要素。脸部通常仅占整个图像的一小部分,相对地,分配给脸部细节处理的资源就显得有限。这导致在最终生成的全身图像中,脸部的细节可能不如半身图像那样清晰。
-
问题二:训练数据的偏差效应 如果您的数据集中包含了大量高清的半身像而非全身像,Stable Diffusion模型可能会倾向于专注于处理这些半身像。由于全身像包含更多的图像元素和更高的维度,模型在绘制时需要投入更多的计算能力。因此,它在半身像的处理上可能会更有优势。
-
问题三:生成算法的局限性 当前的生成算法在处理尺寸不同的对象时,可能存在一些限制。例如,脸部区域是一个复杂且细节丰富的部分,而当算法处理全身图像时,可能难以保持对脸部细节质量的关注。
-
问题四:计算资源的限制 要生成一个特定尺寸的图像(如320x240像素),模型需要进行一系列运算,包括模板提取、特征表示、搜索和匹配等。这些都需要计算资源,并且在有限的资源下,对图像不同部分的优化可能会增加计算成本。因此,对于全身图像,可能对脸部细节质量有所优化,或者简化了处理流程。
解决策略
-
利用更高分辨率图像进行训练 通过使用更高分辨率的图像来进行训练,模型可以学习更多细节,这对提升生成照片中脸部的细节是有益的。但是更高的分辨率会导致人物拉长畸形,大大降低了质量
-
在生成全身图像时采用引导技术 在生成全身图像时,尝试应用引导技术(如注意力机制),这样可以让模型更加专注于脸部区域,从而提高对脸部细节的关注。
我们可以看到即使使用了prompt之后,Stable Diffusion似乎听不懂一样只是对面部加了一个渲染,但并没有达到预期的效果
局部重绘
我们可以直接点击这里到局部重绘,在选择重绘内容之后,如下:
提示词都不用变化,只需要把负面词加上即可
(worst quality, low quality:1.4),monochrome,zombie,bad_prompt_version2-neg,easynegative (1),(worst quality, low quality:1.4),(depth of field, blurry:1.2),(greyscale, monochrome:1.1),3D face,cropped,lowres,text,(nsfw:1.3),(worst quality:2),(low quality:2),(normal quality:2),normal quality,((grayscale)),skin spots,acnes,skin blemishes,age spot,(ugly:1.331),(duplicate:1.331),(morbid:1.21),(mutilated:1.21),(tranny:1.331),mutated hands,(poorly drawn hands:1.5),blurry,(bad anatomy:1.21),(bad proportions:1.331),extra limbs,(disfigured:1.331),(missing arms:1.331),(extra legs:1.331),(fused fingers:1.61051),(too many fingers:1.61051),(unclear eyes:1.331),lowers,bad hands,missing fingers,extra digit,bad hands,missing fingers,(((extra arms and legs))),
- 调整参数设置 通过增加迭代次数或采用不同的采样方法,可以提高生成图像的质量,其中包括脸部细节。
感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。
采样器
在探讨Stable Diffusion的核心技术中,采样器扮演着至关重要的角色。本文将深入分析几种主要的采样器,以及它们各自的特点和应用场景,为读者提供更全面的了解。首先,我们来看Euler采样器。这是一个基础而简洁的工具,它采用欧拉方法来进行迭代操作。欧拉方法本质上是一种高效的数值积分技术,专门用于求解非线性常微分方程。当应用于图像生成时,Euler采样器通过迭代去噪,可以有效地去除图像中的噪声。尽管速度快,Euler采样器也可能导致一些图像细节受损,因为过度的去噪可能会丢失一些微妙的边缘信息。
接下来是Euler a采样器,作为Euler的改进版,它增加了额外的参数用于控制去噪过程。这些参数的引入使得用户能够在去噪过程中拥有更多的自主权,从而有望获得更高的图像质量。这种改进带来了一系列潜在的优势:如更平滑的采样体验、更精细的噪声控制以及更优的整体图像效果。转向Heun采样器,它的设计理念源自Heun方法,这是一种结合了Euler和Midpoint方法的创新技术。Heun方法同样基于数值积分原理,专注于求解常微分方程,并在Stable Diffusion中用于迭代去噪过程。相较于Euler,Heun采样器展现出更加平滑细腻的采样过程,同时提供更为卓越的图像质量。
DPM2采样器则是一种基于物理模型的工具。它采用了“去噪扩散概率模型”(DPM)技术,这一模型能够在去噪过程中优化控制噪声水平,进而生成更高质量的图像。DPM2的强大之处在于它可以精确调整噪声水平,避免了传统去噪方法中常见的“过噪”问题。
DPM2 a是DPM2采样器的又一次重大升级,它继承了Euler a的特性,并引入了更多的参数来进一步控制去噪流程。这些新参数允许用户对去噪过程进行精细的控制,有助于提升最终图像的质量。
DPM fast是DPM系列的另一快速响应选项。它通过降低去噪迭代次数并简化过程的方式,牺牲了一定的图像质量以换取生成速度的提升。尽管如此,DPM fast仍然保留了许多吸引人的特点,包括快速的生成效率和更短的处理时间。
DPM adaptive是DPM2采样器的自适应变体。它具备动态调整采样策略的能力,能够根据图像的复杂度实时调整采样参数。这样做的目的是为了平衡高生成速度和高质量输出之间的关系,确保生成的图像既快又好。
Restart采样器是一种利用重启技术的新型采样器。当图像质量开始出现下降趋势时,Restart采样器会重新开始整个去噪过程,以恢复图像的原有质量,防止其进一步恶化。
DDIM采样器基于迭代去噪技术,使用“去噪扩散迭代模型”(DDIM)。这项技术能够生成非常高质量的图像,但由于它的迭代特性,生成速度相对较慢。
PLMS采样器是DDIM采样器的改良版,它采用了“预条件的Legendre多项式去噪”(PLMS)技术。这种方法不仅能提供更好的图像质量,还能在生成速度上略胜一筹,与DDIM形成鲜明对比。
UniPC采样器基于统一概率耦合,采用“统一概率耦合”技术实现高质量图像输出。UniPC虽然在图像质量方面表现出色,但其复杂性和迭代特性导致了较慢的生成速度。
LCM采样器则基于拉普拉斯耦合模型,运用“拉普拉斯耦合模型”技术。LCM同样能够产出非常高品质的图像,但由于其结构的复杂性及迭代特性,生成速度也相应受到影响。
DPM++ 2M采样器是DPM2的进一步改进版,它引入了许多额外的去噪步骤和参数,旨在提升图像质量。特别值得一提的是,DPM++ 2M在去噪概率模型方面做出了重要的更新。
DPM++ SDE采样器是DPM2的基于随机微分方程(SDE)的改进版本。SDE技术的引入为图像生成提供了更加稳定和高质的结果。
DPM++ 2M SDE采样器是DPM++ 2M与DPM++ SDE结合的产物。它融合了两种技术的优势,为用户带来了更佳的图像质量。
DPM++ 2M SDE Heun采样器是DPM++ 2M SDE的进一步升级,它使用Heun方法进行迭代,结合了去噪扩散概率模型和Heun方法的共同优点。
DPM++ 2S a采样器是DPM++ 2M的最新版本,它增加了额外参数来精细控制去噪过程。这些新增的控制参数允许用户在去噪过程中拥有更多选择,有望获得更加精细和高质量的图像。
最后,我们来看看DPM++ 3M SDE采样器。它是DPM++ 2M SDE采样器的第三代进化版,引入了更多的去噪步骤和参数以追求更高的图像质量。DPM++ 3M SDE的目标是在保持前两代产品优点的同时,进一步提升性能和图像质量,为用户提供更加流畅和精细的图像生成过程。
总结
在当今这个视觉至上的时代,无论是艺术创作、广告宣传还是社交媒体分享,高质量的图像都是吸引观众、传递信息的关键。通过上述介绍的解决策略和技术改进方法,我们不仅能够艺术地掌控人物形象,还能更好地运用Stable Diffusion采样器,这是图像生成领域的一大进步。艺术地掌控人物形象,不仅需要我们有独到的审美眼光,还需要我们掌握相关的技术手段。从化妆造型、服饰搭配到光影效果、后期处理,每一个环节都至关重要。通过上述介绍,我们了解到如何通过细节的调整,让人物形象更加立体、生动。
而Stable Diffusion采样器的运用,则是图像生成技术的又一次飞跃。它通过算法模拟出自然、逼真的图像效果,大大提高了图像生成的质量和效率。通过上述介绍,我们了解到如何通过调整参数、优化算法,让Stable Diffusion采样器更好地为我们服务。
感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。
AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。
一、AIGC所有方向的学习路线
AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、AIGC必备工具
工具都帮大家整理好了,安装就可直接上手!
三、最新AIGC学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、AIGC视频教程合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

相关文章:

AI绘画 Stable Diffusion图像的脸部细节控制——采样器全解析
大家好,我是画画的小强 我们在运用AI绘画 Stable Diffusion 这一功能强大的AI绘图工具时,我们往往会发现自己对提示词的使用还不够充分。在这种情形下,我们应当如何调整自己的策略,以便更加精确、全面地塑造出理想的人物形象呢&a…...
liunx离线安装Firefox
在Linux系统中离线安装Firefox浏览器,您需要先从Mozilla的官方网站下载Firefox的安装包,然后通过终端进行安装。以下是详细的步骤: 准备工作 下载Firefox安装包: 首先,在一台可以上网的电脑上访问Firefox官方下载页面…...

UNet进行病理图像分割
数据集链接:https://pan.baidu.com/s/1IBe_P0AyHgZC39NqzOxZhA?pwdnztc 提取码:nztc UNet模型 import torch import torch.nn as nnclass conv_block(nn.Module):def __init__(self, ch_in, ch_out):super(conv_block, self).__init__()self.conv nn…...
初二数学基础差从哪开始补?附深度解析!
有时候,当你推不开一扇门的时候,不要着急,试着反方向拉一下,或者横向拉一下。下面是小偏整理的初二数学基础差从哪开始补2021年,感谢您的每一次阅读。 初二数学基础差从哪开始补2021年 第一个问题是很多同学都…...

【C语言】return 关键字
在C语言中,return是一个关键字,用于从函数中返回值或者结束函数的执行。它是函数的重要组成部分,负责将函数的计算结果返回给调用者,并可以提前终止函数的执行。 主要用途和原理: 返回值给调用者: 当函数执…...
华为机试HJ13句子逆序
华为机试HJ13句子逆序 题目: 将一个英文语句以单词为单位逆序排放。例如“I am a boy”,逆序排放后为“boy a am I”所有单词之间用一个空格隔开,语句中除了英文字母外,不再包含其他字符 想法: 将输入的字符串通过…...
代码随想录day40 动态规划(5)
52. 携带研究材料(第七期模拟笔试) (kamacoder.com) 完全背包,可重复放入物品,需要用一维滚动数组从前往后遍历。 由于第0个物品和后面物品的转移方程没有区别,可以不额外初始化dp数组,直接用元素全0的d…...

FFmpeg 命令行 音视频格式转换
📚:FFmpeg 提供了丰富的命令行选项和功能,可以用来处理音视频文件、流媒体等,掌握命令行的使用,可以有效提高工作效率。 目录 一、视频转换和格式转换 🔵 将视频文件转换为另一种格式 🔵 指定…...

Jmeter使用JSON Extractor提取多个变量
1.当正则不好使时,用json extractor 2.提取多个值时,默认值必填,否则读不到变量...

c++ 设计模式 的课本范例(下)
(19) 桥接模式 Bridge,不是采用类继承,而是采用类组合,一个类的数据成员是类对象,来扩展类的功能。源码如下: class OS // 操作系统负责绘图 { public:virtual ~OS() {}virtual void draw(cha…...

结合数据索引结构看SQL的真实执行过程
引言 关于数据库设计与优化的前几篇文章中,我们提到了数据库设计优化应该遵守的指导原则、数据库底层的索引组织结构、数据库的核心功能组件以及SQL的解析、编译等。这些其实都是在为SQL的优化、执行的理解打基础。 今天这篇文章,我们以MySQL中InnoDB存…...

spark shuffle——shuffle管理
ShuffleManager shuffle系统的入口。ShuffleManager在driver和executor中的sparkEnv中创建。在driver中注册shuffle,在executor中读取和写入数据。 registerShuffle:注册shuffle,返回shuffleHandle unregisterShuffle:移除shuff…...

HTMLCSS(入门)
HTML <html> <head><title>第一个页面</title></head><body>键盘敲烂,工资过万</body> </html> <!DOCTYPE>文档类型声明,告诉浏览器使用哪种HTML版本显示网页 <!DOCTYPE html>当前页面采取…...
富格林:曝光可信策略制止亏损
富格林指出,相信大家都对黄金投资的价值空间有目共睹,现如今黄金市场波动频繁,因此不少投资者也开始加入该市场试图赢得额外的财富。但作为新手投资者贸贸然地进场操作,亏损的几率是很大的,因此要学会掌握正规平台曝光…...

Android --- Service
出自于此,写得很清楚。关于Android Service真正的完全详解,你需要知道的一切_android service-CSDN博客 出自【zejian的博客】 什么是Service? Service(服务)是一个一种可以在后台执行长时间运行操作而没有用户界面的应用组件。 服务可由其他应用组件…...

Vue3从入门到精通(三)
vue3插槽Slots 在 Vue3 中,插槽(Slots)的使用方式与 Vue2 中基本相同,但有一些细微的差异。以下是在 Vue3 中使用插槽的示例: // ChildComponent.vue <template><div><h2>Child Component</h2&…...

【FreeRTOS】同步与互斥通信-有缺陷的互斥案例
目录 同步与互斥通信同步与互斥的概念同步与互斥并不简单缺陷分析汇编指令优化过程 - 关闭中断时间轴分析 思考时刻 参考《FreeRTOS入门与工程实践(基于DshanMCU-103).pdf》 同步与互斥通信 同步与互斥的概念 一句话理解同步与互斥:我等你用完厕所,我再…...
Docker 安装 Python
Docker 安装 Python 在当今的软件开发领域,Docker 已成为一项关键技术,它允许开发人员将应用程序及其依赖环境打包到一个可移植的容器中。Python,作为一种广泛使用的高级编程语言,经常被部署在 Docker 容器中。本文将详细介绍如何在 Docker 中安装 Python,以及如何配置环…...

外泌体相关基因肝癌临床模型预测——2-3分纯生信文章复现——4.预后相关外泌体基因确定单因素cox回归(2)
内容如下: 1.外泌体和肝癌TCGA数据下载 2.数据格式整理 3.差异表达基因筛选 4.预后相关外泌体基因确定 5.拷贝数变异及突变图谱 6.外泌体基因功能注释 7.LASSO回归筛选外泌体预后模型 8.预后模型验证 9.预后模型鲁棒性分析 10.独立预后因素分析及与临床的…...
C++: Map数组的遍历
在C中,map是一个关联容器,它存储的元素是键值对(key-value pairs),其中每个键都是唯一的,并且自动根据键来排序。遍历map的方式有几种,但最常用的两种是使用迭代器(iterator…...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...

初学 pytest 记录
安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

C# 表达式和运算符(求值顺序)
求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如,已知表达式3*52,依照子表达式的求值顺序,有两种可能的结果,如图9-3所示。 如果乘法先执行,结果是17。如果5…...
LangChain【6】之输出解析器:结构化LLM响应的关键工具
文章目录 一 LangChain输出解析器概述1.1 什么是输出解析器?1.2 主要功能与工作原理1.3 常用解析器类型 二 主要输出解析器类型2.1 Pydantic/Json输出解析器2.2 结构化输出解析器2.3 列表解析器2.4 日期解析器2.5 Json输出解析器2.6 xml输出解析器 三 高级使用技巧3…...
linux设备重启后时间与网络时间不同步怎么解决?
linux设备重启后时间与网络时间不同步怎么解决? 设备只要一重启,时间又错了/偏了,明明刚刚对时还是对的! 这在物联网、嵌入式开发环境特别常见,尤其是开发板、树莓派、rk3588 这类设备。 解决方法: 加硬件…...
python打卡day47
昨天代码中注意力热图的部分顺移至今天 知识点回顾: 热力图 作业:对比不同卷积层热图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import D…...

2025年上海市“星光计划”第十一届职业院校技能大赛 网络安全赛项技能操作模块样题
2025年上海市“星光计划”第十一届职业院校技能大赛 网络安全赛项技能操作模块样题 (二)模块 A:安全事件响应、网络安全数据取证、应用安全、系统安全任务一:漏洞扫描与利用:任务二:Windows 操作系统渗透测试 :任务三&…...