【Node.JS】入门
文章目录
Node.js的入门涉及对其基本概念、特点、安装、以及基本使用方法的了解。以下是对Node.js入门的详细介绍:
一、Node.js基本概念和特点
- 定义:Node.js是一个基于Chrome V8引擎的JavaScript运行环境,它使得JavaScript能够运行在服务器端。
- 特点:
- 轻量级:采用事件驱动、非阻塞I/O的编程模型,可以处理大量并发连接,且占用的系统资源较少。
- 高效性:使用Chrome V8引擎作为JavaScript解释器,能快速解析和执行JavaScript代码。
- 可扩展性:具有丰富的模块和插件,可以方便地扩展其功能。
- 跨平台:能在Windows、Linux、Mac OS等操作系统上运行。
二、Node.js的安装
- Windows系统:
- 访问Node.js官网(https://nodejs.org/zh-cn/),下载Windows版本的安装包。
- 运行安装包,按照提示完成安装。
- 打开命令提示符窗口,输入
node -v
命令,查看Node.js的版本号,如果显示版本号,则说明安装成功。
- Linux系统(以使用apt-get为例):
- 使用
sudo apt-get install nodejs
命令安装Node.js。 - 使用
sudo apt-get install npm
命令安装npm包管理器。 - 打开终端窗口,输入
node -v
命令,查看Node.js的版本号,如果显示版本号,则说明安装成功。
- 使用
三、Node.js的基本使用
- 编写第一个Node.js应用程序:
- 打开文本编辑器,输入以下代码:
// app.js console.log('Hello, World!');
- 将文件保存为
app.js
。 - 在命令提示符或终端窗口中,进入文件所在的目录,输入
node app.js
命令,即可运行Node.js应用程序。
- 打开文本编辑器,输入以下代码:
- 使用Node.js的模块系统:
- 创建一个名为
math.js
的模块,输入以下代码:// math.js exports.add = function(x, y) {return x + y; }; exports.subtract = function(x, y) {return x - y; };
- 在另一个文件中,引入
math.js
模块,并使用其中的函数。 - 创建一个名为
app.js
的文件,输入以下代码:// app.js var math = require('./math'); console.log(math.add(2, 3)); // 输出5 console.log(math.subtract(5, 2)); // 输出3
- 在命令提示符或终端窗口中,进入文件所在的目录,输入
node app.js
命令,即可运行Node.js应用程序。
- 创建一个名为
四、Node.js的进一步学习
Node.js的学习不仅仅局限于以上基础内容,还包括对其内置模块(如fs
文件系统模块、http
模块等)的深入了解,以及如何使用第三方库和框架(如Express、Koa等)来构建更复杂的Web应用程序。此外,Node.js的异步编程模型、事件循环等也是必须掌握的重要概念。
希望以上内容能为你提供Node.js入门的清晰指导。如有需要,建议查阅Node.js的官方文档和相关教程以获取更详细的信息。
相关文章:
【Node.JS】入门
文章目录 Node.js的入门涉及对其基本概念、特点、安装、以及基本使用方法的了解。以下是对Node.js入门的详细介绍: 一、Node.js基本概念和特点 定义:Node.js是一个基于Chrome V8引擎的JavaScript运行环境,它使得JavaScript能够运行在服务器…...

Amazon SageMaker 机器学习之旅的助推器
一、前言 在当今的数字化时代,人工智能和机器学习已经成为推动社会进步的重要引擎。亚马逊云科技在 2023 re:Invent 全球大会上,宣布推出五项 Amazon SageMaker 新功能: Amazon SageMaker HyperPod 通过为大规模分布式训练提供专用的基础架构…...

TransMIL:基于Transformer的多实例学习
MIL是弱监督分类问题的有力工具。然而,目前的MIL方法通常基于iid假设,忽略了不同实例之间的相关性。为了解决这个问题,作者提出了一个新的框架,称为相关性MIL,并提供了收敛性的证明。基于此框架,还设计了一…...
3.用户程序与驱动交互
驱动程序请使用第二章https://blog.csdn.net/chenhequanlalala/article/details/140034424 用户app与驱动交互最常见的做法是insmod驱动后,生成一个设备节点,app通过open,read等系统调用去操作这个设备节点,这里先用mknode命令调…...

尽量不写一行if...elseif...写出高质量可持续迭代的项目代码
背景 无论是前端代码还是后端代码,都存在着定位困难,不好抽离,改造困难的问题,造成代码开发越来越慢,此外因为代码耦合较高,总是出现改了一处地方,然后影响其他地方,要么就是要修改…...
xcrun: error: unable to find utility “simctl“, not a developer tool or in PATH
目录 前言 一、问题详情 二、解决方案 1.确认Xcode已安装 2.安装Xcode命令行工具 3.指定正确的开发者目录 4. 确认命令行工具路径 5. 更新PATH环境变量 前言 今天使用cocoapods更新私有库的时候,遇到了"xcrun: error: unable to find utility &…...

【linux高级IO(一)】理解五种IO模型
💓博主CSDN主页:杭电码农-NEO💓 ⏩专栏分类:Linux从入门到精通⏪ 🚚代码仓库:NEO的学习日记🚚 🌹关注我🫵带你学更多操作系统知识 🔝🔝 Linux高级IO 1. 前言2. 重谈对…...

前端引用vue/element/echarts资源等引用方法Blob下载HTML
前端引用下载vue/element/echarts资源等引用方法 功能需求 需求是在HTML页面中集成Vue.js、Element Plus(Element UI的Vue 3版本)、ECharts等前端资源,使用Blob下载HTML。 解决方案概述 直接访问线上CDN地址:简单直接,…...
昇思MindSpore学习笔记2-01 LLM原理和实践 --基于 MindSpore 实现 BERT 对话情绪识别
摘要: 通过识别BERT对话情绪状态的实例,展现在昇思MindSpore AI框架中大语言模型的原理和实际使用方法、步骤。 一、环境配置 %%capture captured_output # 实验环境已经预装了mindspore2.2.14,如需更换mindspore版本,可更改下…...
uniapp实现图片懒加载 封装组件
想要的效果就是窗口滑动到哪里,哪里的图片进行展示 主要原理使用IntersectionObserver <template><view><image error"HandlerError" :style"imgStyle" :src"imageSrc" :id"randomId" :mode"mode&quo…...

持续交付:自动化测试与发布流程的变革
目录 前言1. 持续交付的概念1.1 持续交付的定义1.2 持续交付的核心原则 2. 持续交付的优势2.1 提高交付速度2.2 提高软件质量2.3 降低发布风险2.4 提高团队协作 3. 实施持续交付的步骤3.1 构建自动化测试体系3.1.1 单元测试3.1.2 集成测试3.1.3 功能测试3.1.4 性能测试 3.2 构建…...

VBA常用的字符串内置函数
前言 在VBA程序中,常用的内置函数可以按照功能分为字符串函数、数字函数、转换函数等等,本节主要会介绍常用的字符串的内置函数,包括Len()、Left()、Mid()、Right()、Split()、String()、StrConV()等。 本节的练习数据表以下表为例ÿ…...
大数据面试题之Spark(7)
目录 Spark实现wordcount Spark Streaming怎么实现数据持久化保存? Spark SQL读取文件,内存不够使用,如何处理? Spark的lazy体现在哪里? Spark中的并行度等于什么 Spark运行时并行度的设署 Spark SQL的数据倾斜 Spark的exactly-once Spark的…...

AI绘画 Stable Diffusion图像的脸部细节控制——采样器全解析
大家好,我是画画的小强 我们在运用AI绘画 Stable Diffusion 这一功能强大的AI绘图工具时,我们往往会发现自己对提示词的使用还不够充分。在这种情形下,我们应当如何调整自己的策略,以便更加精确、全面地塑造出理想的人物形象呢&a…...
liunx离线安装Firefox
在Linux系统中离线安装Firefox浏览器,您需要先从Mozilla的官方网站下载Firefox的安装包,然后通过终端进行安装。以下是详细的步骤: 准备工作 下载Firefox安装包: 首先,在一台可以上网的电脑上访问Firefox官方下载页面…...

UNet进行病理图像分割
数据集链接:https://pan.baidu.com/s/1IBe_P0AyHgZC39NqzOxZhA?pwdnztc 提取码:nztc UNet模型 import torch import torch.nn as nnclass conv_block(nn.Module):def __init__(self, ch_in, ch_out):super(conv_block, self).__init__()self.conv nn…...
初二数学基础差从哪开始补?附深度解析!
有时候,当你推不开一扇门的时候,不要着急,试着反方向拉一下,或者横向拉一下。下面是小偏整理的初二数学基础差从哪开始补2021年,感谢您的每一次阅读。 初二数学基础差从哪开始补2021年 第一个问题是很多同学都…...

【C语言】return 关键字
在C语言中,return是一个关键字,用于从函数中返回值或者结束函数的执行。它是函数的重要组成部分,负责将函数的计算结果返回给调用者,并可以提前终止函数的执行。 主要用途和原理: 返回值给调用者: 当函数执…...
华为机试HJ13句子逆序
华为机试HJ13句子逆序 题目: 将一个英文语句以单词为单位逆序排放。例如“I am a boy”,逆序排放后为“boy a am I”所有单词之间用一个空格隔开,语句中除了英文字母外,不再包含其他字符 想法: 将输入的字符串通过…...
代码随想录day40 动态规划(5)
52. 携带研究材料(第七期模拟笔试) (kamacoder.com) 完全背包,可重复放入物品,需要用一维滚动数组从前往后遍历。 由于第0个物品和后面物品的转移方程没有区别,可以不额外初始化dp数组,直接用元素全0的d…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

基于Docker Compose部署Java微服务项目
一. 创建根项目 根项目(父项目)主要用于依赖管理 一些需要注意的点: 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件,否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...

多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
《C++ 模板》
目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板,就像一个模具,里面可以将不同类型的材料做成一个形状,其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式:templa…...

stm32wle5 lpuart DMA数据不接收
配置波特率9600时,需要使用外部低速晶振...

[拓扑优化] 1.概述
常见的拓扑优化方法有:均匀化法、变密度法、渐进结构优化法、水平集法、移动可变形组件法等。 常见的数值计算方法有:有限元法、有限差分法、边界元法、离散元法、无网格法、扩展有限元法、等几何分析等。 将上述数值计算方法与拓扑优化方法结合&#…...

深入解析光敏传感技术:嵌入式仿真平台如何重塑电子工程教学
一、光敏传感技术的物理本质与系统级实现挑战 光敏电阻作为经典的光电传感器件,其工作原理根植于半导体材料的光电导效应。当入射光子能量超过材料带隙宽度时,价带电子受激发跃迁至导带,形成电子-空穴对,导致材料电导率显著提升。…...

高端性能封装正在突破性能壁垒,其芯片集成技术助力人工智能革命。
2024 年,高端封装市场规模为 80 亿美元,预计到 2030 年将超过 280 亿美元,2024-2030 年复合年增长率为 23%。 细分到各个终端市场,最大的高端性能封装市场是“电信和基础设施”,2024 年该市场创造了超过 67% 的收入。…...