当前位置: 首页 > news >正文

【yolov8系列】ubuntu上yolov8的开启训练的简单记录

前言

yolov8的广泛使用,拉取yolov8源码工程,然后配置环境后直接运行,初步验证自己数据的检测效果,在数据集准备OK的情况下 需要信手拈来,以保证开发过程的高效进行。
本篇博客更注意为了方便自己使用时参考。顺便也记录下ubuntu下的一些简单的常用的操作。

1 ubuntu的相关命令

ubuntu关于账号的操作

  1. 添加删除用户
    sudo adduser XXX       ## 新增用户
    sudo userdel -r XXX    ## 删除用户# 更改用户主目录
    # sudo usermod -d /target_dir/ username
    # sudo chown -R username target_dir/  #将文件夹所有权给该用户# sudo useradd -r -m -s /bin/bash username (-r root)
    # sudo passwd XXXX
    # sudo userdel -r username
    # deluser USER --remove-home --remove-all-files
    
  2. 修改密码
    sudo passwd user
    
  3. 查看所有用户
    grep bash /etc/passwd
    
  4. 添加删除管理员权限
    sudo adduser username sudo
    sudo deluser username sudo
    

ubuntu下磁盘信息查看

  1. 查看硬盘容量
    df -h                              ## 查看硬盘容量
    du -h --max-depth=1         ## 查看当前路径文件夹大小
    
  2. 查看文件夹详细信息
    ls -l
    ls -al
    
  3. 统计文件夹中文件数量
    ls -l | grep "^-" | wc -l
    
  4. 查看显卡占用
    nvidia-smi           # 显示PID
    ps -f -p 26359     # 查询PID
    

2 安装Anaconda

官网上下载不流畅,清华镜像丝滑下载(官方通知不更新 但够使用),链接为
https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/
https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/ mini版本,都能正常使用。

个人选择miniconda安装,下载【Miniconda3-4.7.12-Linux-x86_64.sh】

chmod +x Miniconda3*.sh
bash Miniconda3*.sh1 按 enter 键2 输入yes并enter3 选择路径:enter4 是否添加环境变量: yes5 是否安装Microsoft vs no就行(因为已经安装了vscode和qt,所以这里no就行)
source ~/.bashrc
conda list                   #显示自己已安装包
conda create -n env_name(自己写名字) python=3.7(版本号) # 创建虚拟环境
source activate env_name    #激活虚拟环境
deactivate                 # 退出虚拟环境
conda env list            # 查看已有虚拟环境
conda install# 安装包
conda remove ~         # 卸载包
conda update           # 更新

3 安装VScode

https://blog.csdn.net/magic_ll/article/details/119679279

4 YOLOV8的环境配置与运行

4.1 工程下载与环境配置

工程下载ultralytics 8.0.36。

conda create -n YOLOV8 python=3.8
conda activate YOLOV8
pip install ultralytics==8.0.36
pip list          ## 查看安装列表
## 剩余需要的库,正常安装即可

4.2 demo工程

# import sys
# sys.path.append("./")
from ultralytics import YOLO
# import onnxruntime as ort
import cv2
import os
import globdef demo():### predict===================================# 加载模型test_path = "https://ultralytics.com/images/bus.jpg"outpath = os.path.join(os.getcwd(), "runs/detect")# model = YOLO("yolov8n.yaml")  # 从头开始构建新模型model = YOLO("yolov8n.pt")  # 加载预训练模型(推荐用于训练)# Use the modelresults = model.train(data="coco128.yaml", epochs=3)  # 训练模型results = model.val()  # 在验证集上评估模型性能results = model(test_path)  # 预测图像results = model.predict(test_path, device=0,save=True,show=False,save_txt=True, imgsz=[640,640],save_conf=True, name=outpath, iou=0.5)  ## 预测图像 ## 这里的imgsz为高宽success = model.export(format="onnx")  # 将模型导出为 ONNX 格式demo()

可能报错:运行上述脚本,报错如下,原因是显卡驱动和cuda版本不匹配。
在这里插入图片描述
提高显卡驱动版本或降低pytorch版本即可。这里方便起见,降低pytorch版本与显卡驱动匹配即可。
此时pytorch版本为:torch2.3.0,torchvision0.18.0。重新安装版本torch2.1.1,torchvision0.16.1。


4.3 自己的工程训练

# import sys
# sys.path.append("./")
from ultralytics import YOLO
# import onnxruntime as ort
import cv2
import os
import globdef export_own():model_file = "./yolov8n.pt",print(model_file)model = YOLO(model_file)  # load a pretrained model (recommended for training)pt_path = model.model.pt_pathuse_model = os.path.basename(pt_path)## 通过修改pt_path,从而直接修改转换的onnx的名字,就可以导出不同输入尺寸的onnx模型# model.model.pt_path = pt_path.replace(use_model, f"{use_model[:-3]}_export{use_model[-3:]}")model.export(format='onnx', opset=11, simplify=True, dynamic=False, imgsz=[352,352])def train_own():model_path = "yolov8s.pt"# model_path = os.path.join(os.getcwd(), "runs/detect/yolov8_case23_epoch300/weights/epoch250.pt")savename = os.path.join(os.getcwd(), "runs/detect/yolov8_case24_epoch300")model = YOLO(model_path)  model.train(data="./dataYaml/Object_case19.yaml", device="4,5,6,7", imgsz=352, close_mosaic=50, epochs=300, batch=512, workers=16, save_period=10, name=savename, patience=300,# resume=True ## 是否要继续训练)  if __name__=="__main__":train_own()export_own()

5 端侧模型转换

5.1 RK3566模型转换

rknn-toolkit2-v1.4的环境配置


5.2 SIM9383模型转换

SIM9383 的环境配置

相关文章:

【yolov8系列】ubuntu上yolov8的开启训练的简单记录

前言 yolov8的广泛使用,拉取yolov8源码工程,然后配置环境后直接运行,初步验证自己数据的检测效果,在数据集准备OK的情况下 需要信手拈来,以保证开发过程的高效进行。 本篇博客更注意为了方便自己使用时参考。顺便也记录…...

Scala学习笔记15: 文件和正则表达式

目录 第十五章 文件和正则表达式1- 读取行2- 从URL或者其它源读取3- 写入文本文件4- 序列化5- 正则表达式6- 正则表达式验证输入数据格式end 第十五章 文件和正则表达式 1- 读取行 在Scala中读取文件中的行可以通过不同的方法实现 ; 一种常见的方法是使用 scala.io.Source 对…...

外卖员面试现状

说明: 以下身份角色用符号代替 # 面试官 $ 求职者 # 看了您的简历你有两年半的送外卖经验,可以简单说一下您平时是怎么送外卖的吗? $ 我首先在平台接单然后到店里取餐,取到餐后到顾客留下的地址,再通知顾客取餐 # 你们也用电动…...

异步加载与动态加载

异步加载和动态加载在概念上有相似之处,但并不完全等同。 异步加载(Asynchronous Loading)通常指的是不阻塞后续代码执行或页面渲染的数据或资源加载方式。在Web开发中,异步加载常用于从服务器获取数据,而不需要用户等…...

MUNIK解读ISO26262--什么是DFA

我们在学习功能安全过程中,经常会听到很多安全分析方法,有我们熟知的FMEA(Failure Modes Effects Analysis)和FTA(Fault Tree Analysis)还有功能安全产品设计中几乎绕不开的FMEDA(Failure Modes Effects and Diagnostic Analysis),相比于它们…...

启动spring boot项目停止 提示80端口已经被占用

可能的情况: 检查并结束占用进程: 首先,你需要确定哪个进程正在使用80端口。在Windows上,可以通过命令行输入netstat -ano | findstr LISTENING | findstr :80来查看80端口的PID,然后在任务管理器中结束该进程。在...

SOLIDWORKS分期许可(订阅形式),降低前期的投入成本!

SOLIDWORKS 分期许可使您能够降低前期软件成本,同时提供对 SOLIDWORKS 新版本和升级程序的即时访问,以及在每个期限结束时调整产品的灵活性,帮助您跟上市场需求和竞争压力的步伐。 目 录: ★ 1 什么是SOLIDWORKS分期许可 ★ 2 …...

详细分析Spring Boot 数据源配置的基本知识(附配置)

目录 前言1. 基本知识2. 模版3. 实战经验前言 对于Java的基本知识推荐阅读: java框架 零基础从入门到精通的学习路线 附开源项目面经等(超全)【Java项目】实战CRUD的功能整理(持续更新)1. 基本知识 包括数据源的概念、连接池的作用、多数据源的实现与管理、Druid 连接池…...

海思SD3403/SS928V100开发(15)9轴IMU ICM-20948模块SPI接口调试

1.前言 芯片平台: 海思SD3403/SS928V100 操作系统平台: Ubuntu20.04.05【自己移植】 9轴IMU模块:ICM-20948 通讯接口: SPI 模块datasheet手册: https://download.csdn.net/download/jzwjzw19900922/89517096 2. 调试记录 2.1 pinmux配置 #spi0 bspmm 0x0102F01D8 …...

大力出奇迹:大语言模型的崛起与挑战

随着人工智能(AI)技术的迅猛发展,特别是在自然语言处理(NLP)领域,大语言模型(LLM)的出现与应用,彻底改变了我们与机器互动的方式。本文将探讨ChatGPT等大语言模型的定义、…...

【算法 - 哈希表】两数之和

这里写自定义目录标题 两数之和题目解析思路解法一 :暴力枚举 依次遍历解法二 :使用哈希表来做优化 核心逻辑为什么之前的暴力枚举策略不太好用了?所以,这就是 这道题选择 固定一个数,再与其前面的数逐一对比完后&…...

【深度学习】图形模型基础(5):线性回归模型第一部分:认识线性回归模型

1. 回归模型定义 最简单的回归模型是具有单一预测变量的线性模型,其基本形式如下: y a b x ϵ y a bx \epsilon yabxϵ 其中, a a a 和 b b b 被称为模型的系数或更一般地,模型的参数。 ϵ \epsilon ϵ 代表误差项&#…...

2024 年第十四届 APMCM 亚太地区大学生数学建模竞赛B题超详细解题思路+数据预处理问题一代码分享

B题 洪水灾害的数据分析与预测 亚太中文赛事本次报名队伍约3000队,竞赛规模体量大致相当于2024年认证杯,1/3个妈杯,1/10个国赛。赛题难度大致相当于0.6个国赛,0.8个妈杯。该比例仅供大家参考。 本次竞赛赛题难度A:B:C3:1:4&…...

Yarn有哪些功能特点

Yarn是一个由Facebook团队开发,并联合Google、Exponent和Tilde等公司推出的JavaScript包管理工具,旨在提供更优的包管理体验,解决npm(Node Package Manager)的一些痛点。Yarn的功能特点主要包括以下几个方面&#xff1…...

深度学习算法bert

bert 属于自监督学习的一种(输入x的部分作为label) 1. bert是 transformer 中的 encoder ,不同的bert在encoder层数、注意力头数、隐藏单元数不同 2. 假设我们有一个模型 m ,首先我们为某种任务使用大规模的语料库预训练模型 m …...

PyTorch - 神经网络基础

神经网络的主要原理包括一组基本元素,即人工神经元或感知器。它包括几个基本输入,例如 x1、x2… xn ,如果总和大于激活电位,则会产生二进制输出。 样本神经元的示意图如下所述。 产生的输出可以被认为是具有激活电位或偏差的加权…...

docker-compose搭建minio对象存储服务器

docker-compose搭建minio对象存储服务器 最近想使用oss对象存储进行用户图片上传的管理,了解了一下例如aliyun或者腾讯云的oss对象存储服务,但是呢涉及到对象存储以及经费有限的缘故,决定自己手动搭建一个oss对象存储服务器; 首先…...

vue3使用pinia中的actions,需要调用接口的话

actions,需要调用接口的话,假如页面想要调用actions中的方法获取数据, 必须使用try catch async await 进行包裹,详情看下面代码 import {defineStore} from pinia import {reqCode,reqUserLogin} from ../../api/hospital/i…...

Python酷库之旅-第三方库Pandas(003)

目录 一、用法精讲 4、pandas.read_csv函数 4-1、语法 4-2、参数 4-3、功能 4-4、返回值 4-5、说明 4-6、用法 4-6-1、创建csv文件 4-6-2、代码示例 4-6-3、结果输出 二、推荐阅读 1、Python筑基之旅 2、Python函数之旅 3、Python算法之旅 4、Python魔法之旅 …...

社交电商中的裂变营销利器,二级分销模式,美妆家具成功案例分享

二级分销返佣模式是一种帮助商家迅速扩大市场覆盖的有效营销策略,不仅能降低营销成本,还能提升品牌知名度。下面通过两个具体的案例来说明这种模式的好处和优势。 某知名美妆品牌在市场竞争日益激烈的情况下,决定采用二级分销返佣模式进行市场…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?

在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现&#xff08;两者等价&#xff09;&#xff0c;用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例&#xff1a; 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)

本期内容并不是很难&#xff0c;相信大家会学的很愉快&#xff0c;当然对于有后端基础的朋友来说&#xff0c;本期内容更加容易了解&#xff0c;当然没有基础的也别担心&#xff0c;本期内容会详细解释有关内容 本期用到的软件&#xff1a;yakit&#xff08;因为经过之前好多期…...

【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)

前言&#xff1a; 双亲委派机制对于面试这块来说非常重要&#xff0c;在实际开发中也是经常遇见需要打破双亲委派的需求&#xff0c;今天我们一起来探索一下什么是双亲委派机制&#xff0c;在此之前我们先介绍一下类的加载器。 目录 ​编辑 前言&#xff1a; 类加载器 1. …...

【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error

在前端开发中&#xff0c;JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作&#xff08;如 Promise、async/await 等&#xff09;&#xff0c;开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝&#xff08;r…...

深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏

一、引言 在深度学习中&#xff0c;我们训练出的神经网络往往非常庞大&#xff08;比如像 ResNet、YOLOv8、Vision Transformer&#xff09;&#xff0c;虽然精度很高&#xff0c;但“太重”了&#xff0c;运行起来很慢&#xff0c;占用内存大&#xff0c;不适合部署到手机、摄…...

【Linux手册】探秘系统世界:从用户交互到硬件底层的全链路工作之旅

目录 前言 操作系统与驱动程序 是什么&#xff0c;为什么 怎么做 system call 用户操作接口 总结 前言 日常生活中&#xff0c;我们在使用电子设备时&#xff0c;我们所输入执行的每一条指令最终大多都会作用到硬件上&#xff0c;比如下载一款软件最终会下载到硬盘上&am…...