图像的灰度直方图
先来认识一下灰度直方图,灰度直方图是图像灰度级的函数,用来描述每个灰度级在图像矩阵中的像素个数或者占有率。接下来使用程序实现直方图:
首先导入所需的程序包:
In [ ]:
import cv2
import numpy as np
import matplotlib.pyplot as plt
定义计算灰度直方图的函数:
In [ ]:
def calcGrayHist(I):
# 计算灰度直方图
h, w = I.shape[:2]
grayHist = np.zeros([256], np.uint64)
for i in range(h):
for j in range(w):
grayHist[I[i][j]] += 1
return grayHist
读取一张图片:
In [ ]:
img = cv2.imread('./street.jpg')
img2 = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
plt.imshow(img2)
plt.show()
绘制灰度直方图:
In [ ]:
grayHist = calcGrayHist(img)
x = np.arange(256)
plt.plot(x, grayHist, 'r', linewidth=2, c='black')
plt.xlabel("gray Label")
plt.ylabel("number of pixels")
plt.show()

图像的对比度是通过灰度级范围来度量的,而灰度级范围可通过观察灰度直方图得到,灰度级范围越大代表对比度越高;反之对比度越低,低对比度的图像在视觉上给人的感觉是看起来不够清晰,所以通过算法调整图像的灰度值,从而调整图像的对比度是有必要的。最简单的一种对比度增强的方法是通过灰度值的线性变换实现的。
相关文章:
图像的灰度直方图
先来认识一下灰度直方图,灰度直方图是图像灰度级的函数,用来描述每个灰度级在图像矩阵中的像素个数或者占有率。接下来使用程序实现直方图: 首先导入所需的程序包: In [ ]: import cv2 import numpy as np import matplotlib…...
软件测试面试题:Redis的五种数据结构,以及使用的场景是什么?
字符串(Strings):简单直接,就像记事本一样,用来存储和快速访问简单的数据,比如缓存网页或者保存用户会话信息。 列表(Lists):有序的数据集合,适合用来存储按…...
Java后端每日面试题(day1)
目录 JavaWeb三大组件依赖注入的方式Autowire和Resurce有什么区别?Spring Boot的优点Spring IoC是什么?说说Spring Aop的优点Component和Bean的区别自定义注解时使用的RetentionPolicy枚举类有哪些值?如何理解Spring的SPI机制?Spr…...
AI与测试相辅相成
AI助力软件测试 1.AI赋能软件测试 使用AI工具来帮助测试人员提高测试效率,提供缺陷分析和缺陷预测。 语法格式 设定角色 具体指示 上下文格式 例: 角色:你是一个测试人员 内容:请帮我生成登录案例的测试用例 1.只有输入正确账号和密码才…...
搜索+动态规划
刷题刷题刷题刷题 Forgery - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 思路: 需要两个数组,一个数组全部初始化为".",另一个数组输入数据,每碰到一个“.”就进行染色操作,将其周围的…...
strcpy,srtcmp,strlen函数漏洞利用
strcpy,srtcmp,strlen函数漏洞利用 strcpy strcpy函数用于将字符串复制到另一个指针指向的空间中,遇到空字符 **b’x\00’**时停止,: 所以可以利用 strcpy不检查缓冲区 的漏洞(构造的字符串要以\0结尾),…...
SketchUp + Enscape+ HTC Focus3 VR
1. 硬件: 设备连接 2. 软件: 安装steam steamVR Vive Business streaming 3. 操作: 双方登录steam 账号,然后带上头盔,用手柄在HTC Focus3 安装 串流软件,选择串流软件,在Enscape中选择 VR 模式即可 4.最终效果: SketchUp Enscape HTC Focus 3 VR 实时预览_哔哩哔哩_bi…...
推荐3款Windows系统的神级软件,免费、轻量、绝对好用!
DiskView DiskView是一款用于管理和查看磁盘空间的工具,它集成了于微软的Windows操作系统资源管理器中,以显示直观的磁盘空间使用情况。该软件通过生成图形化地图,帮助用户组织和管理大量文件和文件夹,从而高效地管理磁盘空间。用…...
-bash: /snap/bin/docker: 没有那个文件或目录
-bash: /snap/bin/docker: 没有那个文件或目录 解决办法 export PATH$PATH:/usr/bin/docker然后,重新加载配置文件 source ~/.bashrc...
[深度学习]卷积理解
单通道卷积 看这个的可视化就很好理解了 https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md 多通道卷积 当输入有多个通道时,卷积核需要拥有相同的通道数. 假设输入有c个通道,那么卷积核的每个通道分别于相应的输入数据通道进行卷积,然后将得到的特征图对…...
基于aardio web.view2库和python playwright包的内嵌浏览器自动化操作
通过cdp协议可以实现playwright操控webview。 新建Python窗口工程 修改pip.aardio 修改pip.aardio,并执行,安装playwright。 //安装模块 import process.python.pip; //process.python.path "python.exe";/* 安装模块。 参数可以用一个字…...
《数据仓库与数据挖掘》 总复习
试卷组成 第一章图 第二章图 第三章图 第四章图 第五章图 第六章图 第九章图 第一章 DW与DM概述 (特点、特性) DB到DW 主要特征 (1)数据太多,信息贫乏(Data Rich, Information Poor)。 &a…...
EtherCAT主站IGH-- 8 -- IGH之domain.h/c文件解析
EtherCAT主站IGH-- 8 -- IGH之domain.h/c文件解析 0 预览一 该文件功能`domain.c` 文件功能函数预览二 函数功能介绍1. `ec_domain_init`2. `ec_domain_clear`3. `ec_domain_add_fmmu_config`4. `ec_domain_add_datagram_pair`5. `ec_domain_finish`6. `ecrt_domain_reg_pdo_en…...
《昇思25天学习打卡营第10天|使用静态图加速》
文章目录 今日所学:一、背景介绍1. 动态图模式2. 静态图模式 三、静态图模式的使用场景四、静态图模式开启方式1. 基于装饰器的开启方式2. 基于context的开启方式 总结: 今日所学: 在上一集中,我学习了保存与加载的方法ÿ…...
【HarmonyOS4学习笔记】《HarmonyOS4+NEXT星河版入门到企业级实战教程》课程学习笔记(二十二)
课程地址: 黑马程序员HarmonyOS4NEXT星河版入门到企业级实战教程,一套精通鸿蒙应用开发 (本篇笔记对应课程第 32 节) P32《31.通知-基础通知》 基础文本类型通知:briefText 没有用,写了也白写。 长文本类型…...
六西格玛绿带培训如何告别“走过场”?落地生根
近年来,六西格玛绿带培训已经成为了众多企业提升管理水平和员工技能的重要途径。然而,不少企业在实施六西格玛绿带培训时,往往陷入形式主义的泥潭,导致培训效果大打折扣。那么,如何避免六西格玛绿带培训变成“走过场”…...
Linux——提取包文件到指定目录,命令解释器-shell,type 命令
- 提取包文件到指定目录 bash tar xf/-xf/-xzf 文件名.tar.gz [-C 目标路径] tar xf/-xf/-xjf 文件名.tar.bz2 [-C 目标路径] tar xf/-xf/-xJf 文件名.tar.xz [-C 目标路径] ### 示例 - 将/etc下所有内容打包压缩到/root目录中 bash [rootserver ~]# tar -cvf taretc…...
【最详细】PhotoScan(MetaShape)全流程教程
愿天下心诚士子,人人会PhotoScan! 愿天下惊艳后辈,人人可剑开天门! 本教程由CSDN用户CV_X.Wang撰写,所用数据均来自山东科技大学视觉测量研究团队,特此鸣谢!盗版必究! 一、引子 Ph…...
Excel多表格合并
我这里一共有25张表格: 所有表的表头和格式都一样,但是内容不一样: 现在我要做的是把所有表格的内容合并到一起,研究了一下发现WPS的这项功能要开会员的,本来想用代码撸出来的,但是后来想想还是找其他办法,后来找到"易用宝"这个插件,这个插件可以从如下地址下载:ht…...
AI作画工具深度剖析:Midjourney vs. Stable Diffusion (SD)
在人工智能技术的推动下,艺术创作的边界被不断拓宽,AI作画工具成为数字艺术家与创意人士的新宠。其中,Midjourney与Stable Diffusion(SD)作为当前领域的佼佼者,以其独特的算法机制、丰富的功能特性及高质量…...
未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...
MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例
一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...
cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...
智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
Redis数据倾斜问题解决
Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...
Vite中定义@软链接
在webpack中可以直接通过符号表示src路径,但是vite中默认不可以。 如何实现: vite中提供了resolve.alias:通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...
AI语音助手的Python实现
引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...
