【Leetcode笔记】406.根据身高重建队列
文章目录
- 1. 题目要求
- 2.解题思路
- 注意
- 3.ACM模式代码
1. 题目要求

2.解题思路
首先,按照每个人的身高属性(即people[i][0])来排队,顺序是从大到小降序排列,如果遇到同身高的,按照另一个属性(即people[i][1])来从小到大升序排列。
使用到C++的sort()函数,第三个参数cmp函数自己定义:
static bool cmp(const vector<int>& a, const vector<int>& b)
{
// 使用const关键字来确保在函数内部不会修改a和bif(a[0] == b[0]) return a[1] < b[1]; // 象形的记,升序return a[0] > b[0];
}
接下来再次遍历people数组,从前到后将每个元素放入到一个二维数组里。
为什么从前到后?
先排身高更高的,后面身高矮的即使因为第二个属性需要插入到前面人的中间去也没关系,反正身高更高的第二个属性不受影响。但是从后到前先排身高矮的可就不行了。
vector<vector<int>> reconstructQueue(vector<vector<int>>& people) {sort (people.begin(), people.end(), cmp);vector<vector<int>> que;for (int i = 0; i < people.size(); i++) {int position = people[i][1];que.insert(que.begin() + position, people[i]);}return que;}
时间复杂度要大于O(nlogn + n ^ 2),首先C++里的sort函数的时间复杂度就是O(nlogn),这个排序函数内部并不是单一的快速排序或者是其他的,而是动态改变的,可能一开始数据量较大时先快速排序对半分,等分到后面则使用插入排序;C++的vector是一个动态数组,插入操作是先考虑原来的数组大小够不够,如果不够那就二倍扩容,然后把原数组拷贝到新数组再插入新的元素,所以时间复杂度要大于O(n^2)。
将数组改成链表:
vector<vector<int>> reconstructQueue(vector<vector<int>>& people) {sort (people.begin(), people.end(), cmp);list<vector<int>> que; // list底层是链表实现,插入效率比vector高的多for (int i = 0; i < people.size(); i++) {int position = people[i][1]; // 插入到下标为position的位置std::list<vector<int>>::iterator it = que.begin();while (position--) { // 寻找在插入位置it++;}que.insert(it, people[i]);}return vector<vector<int>>(que.begin(), que.end());
注意
sort函数的第三个参数是cmp,cmp是一个比较函数,想这样使用 sort (people.begin(), people.end(), cmp);那必须得将cmp声明为静态成员函数,这样就不需要将函数实例化了。
3.ACM模式代码
#include <vector>
#include <algorithm>
#include <list>
#include <iostream> // 用于输出调试using namespace std;class Solution {
public:static bool cmp(const vector<int>& a, const vector<int>& b) {// Sort by height descending, and if heights are same, by k ascendingif (a[0] == b[0]) {return a[1] < b[1]; // Sort by k in ascending order} else {return a[0] > b[0]; // Sort by height in descending order}}vector<vector<int>> reconstructQueue(vector<vector<int>>& people) {// Sort people array using custom comparatorsort(people.begin(), people.end(), cmp);// Use list for efficient insertionlist<vector<int>> que;// Insert into list at the specified index (k value)for (int i = 0; i < people.size(); i++) {int position = people[i][1]; // k value tells us the exact index to insertauto it = que.begin();advance(it, position); // Move iterator to the correct positionque.insert(it, people[i]); // Insert person into the list}// Convert list back to vector for returning the resultreturn vector<vector<int>>(que.begin(), que.end());}
};int main() {Solution sol;// Example usage:vector<vector<int>> people = {{7,0}, {4,4}, {7,1}, {5,0}, {6,1}, {5,2}};vector<vector<int>> result = sol.reconstructQueue(people);// Print the resultcout << "[";for (const auto& person : result) {cout << "[" << person[0] << ", " << person[1] << "],";}cout << "]";cout << endl;return 0;
}
相关文章:
【Leetcode笔记】406.根据身高重建队列
文章目录 1. 题目要求2.解题思路 注意3.ACM模式代码 1. 题目要求 2.解题思路 首先,按照每个人的身高属性(即people[i][0])来排队,顺序是从大到小降序排列,如果遇到同身高的,按照另一个属性(即p…...
Linux 安装pdfjam (PDF文件尺寸调整)
跟Ghostscript搭配使用,这样就可以将不同尺寸的PDF调整到相同尺寸合并了。 在 CentOS 上安装 pdfjam 需要安装 TeX Live,因为 pdfjam 是基于 TeX Live 的。以下是详细的步骤来安装 pdfjam: ### 步骤 1: 安装 EPEL 仓库 首先,安…...
python+playwright 学习-90 and_ 和 or_ 定位
前言 playwright 从v1.34 版本以后支持and_ 和 or_ 定位 XPath 中的and和or xpath 语法中我们常用的有text()、contains() 、ends_with()、starts_with() //*[text()="文本"] //*[contains(@id, "xx")] //...
亲子时光里的打脸高手,贾乃亮与甜馨的父爱如山
贾乃亮这波操作,简直是“实力打脸”界的MVP啊! 7月5号,他一甩手,甩出张合照, 瞬间让多少猜测纷飞的小伙伴直呼:“脸疼不?”带着咱家小甜心甜馨, 回了哈尔滨老家,这趟亲…...
MySQL篇-SQL优化实战
SQL优化措施 通过我们日常开发的经验可以整理出以下高效SQL的守则 表主键使用自增长bigint加适当的表索引,需要强关联字段建表时就加好索引,常见的有更新时间,单号等字段减少子查询,能用表关联的方式就不用子查询,可…...
【MySQL备份】Percona XtraBackup总结篇
目录 1.前言 2.问题总结 2.1.为什么在恢复备份前需要准备备份 2.1.1. 保证数据一致性 2.1.2. 完成崩溃恢复过程 2.1.3. 解决非锁定备份的特殊需求 2.1.4. 支持增量和差异备份 2.1.5. 优化恢复性能 2.2.Percona XtraBackup的工作原理 3.注意事项 1.前言 在历经了详尽…...
【Git 】规范 Git 提交信息的工具 Commitizen
Commitizen是一个用于规范Git提交信息的工具,它旨在帮助开发者生成符合一定规范和风格的提交信息,从而提高代码维护的效率,便于追踪和定位问题。以下是对Commitizen的详细介绍。 1、Commitizen的作用与优势 规范提交信息:通过提供…...
ABB PPC902AE1013BHE010751R0101控制器 处理器 模块
ABB PPC902AE1013BHE010751R0101 该模块是用于自动化和控制系统的高性能可编程控制器。它旨在与其他自动化和控制设备一起使用,以提供完整的系统解决方案 是一种数字输入/输出模块,提供了高水平的性能和可靠性。它专为苛刻的工业应用而设计,…...
大模型AIGC转行记录(一)
自从22年11月chat gpt上线以来,这一轮的技术浪潮便变得不可收拾。我记得那年9月份先是在技术圈内讨论,然后迅速地,全社会在讨论,各个科技巨头、金融机构、政府部门快速跟进。 软件开发行业过去与现状 我19年决定转码的时候&…...
element-ui Tree之懒加载叶子节点强制设置父级半选效果
效果: 前言: 我们是先只展示一级的,二级的数据是通过点击之后通过服务器获取数据,并不是全量数据直接一起返回回来的。 问题: 当你设置了默认选中的子节点,但是由于刚进入页面此时tree中数据暂是没有这个…...
Java项目:基于SSM框架实现的高校共享单车管理系统分前后台【ssm+B/S架构+源码+数据库+开题报告+任务书+毕业论文】
一、项目简介 本项目是一套基于SSM框架实现的高校共享单车管理系统 包含:项目源码、数据库脚本等,该项目附带全部源码可作为毕设使用。 项目都经过严格调试,eclipse或者idea 确保可以运行! 该系统功能完善、界面美观、操作简单、…...
【Android】自定义换肤框架02之自定义AssetManager和Resource
ResourceId是如何变成对应Resource的 在上一章中,我们已经讲过,apk中有个资源索引文件 其中保存了每个资源对应的id,name,type,path 资源文件的解析,主要涉及两个类,AssetManager和Resource …...
熵权法、熵值法、熵权TOPSIS三种方法的实用场景及优劣比较
在统计分析与决策分析中,熵权法、熵值法和熵权TOPSIS是三种常用的基于信息熵理论的方法。这些方法在处理多属性或多指标决策问题时,能够客观地反映数据的内在特性和各指标的相对重要性,为科学决策提供了有力支持。 熵权法 实用场景 熵权法是一种基于信息熵的客观赋权方法…...
无人机人员搜救
人员搜救-水域救援 水域搜救:快速水面搜查 物资抛投:救生物资抛投 绳索牵引:牵引救援绳索 领航船艇:水面侦察领航 人员搜救 昼夜搜救,精准定位 水域搜救 经纬 M300 RTK 搭载禅思 H20T 能够满足全天候作业需求&a…...
目标检测算法
讯飞星火 目标检测算法是计算机视觉领域的一项核心技术,用于在数字图像或视频中识别和定位一个或多个特定对象实例。这些算法通常需要确定对象的位置(例如通过边界框)和类别(例如人、汽车、狗等)。以下是一些流行的目…...
SpringSecurity 三更草堂学习笔记
0.简介 Spring Security是Spring家族中的一个安全管理框架。相比与另外一个安全框架Shiro,它提供了更丰富的功能,社区资源也比Shiro丰富。 一般来说中大型的项目都是使用SpringSecurity来做安全框架。小项目有Shiro的比较多,因为相比与Spring…...
鸿蒙生态应用开发白皮书V3.0
来源:华为: 近期历史回顾:...
CSS - 深入理解选择器的使用方式
CSS基本选择器 通配选择器元素选择器类选择器id 选择器 通配选择器 作用:可以选中所有HTML元素。语法: * {属性名;属性值; }举例: /* 选中所有元素 */ * {color: orange;font-size: 40px; }在清除样式方面有很大作用 元素选择器…...
动手学深度学习(Pytorch版)代码实践 -循环神经网络-54~55循环神经网络的从零开始实现和简洁实现
54循环神经网络的从零开始实现 import math import torch from torch import nn from torch.nn import functional as F from d2l import torch as d2l import matplotlib.pyplot as plt import liliPytorch as lp# 读取H.G.Wells的时光机器数据集 batch_size, num_steps 32, …...
Python酷库之旅-第三方库Pandas(006)
目录 一、用法精讲 10、pandas.DataFrame.to_excel函数 10-1、语法 10-2、参数 10-3、功能 10-4、返回值 10-5、说明 10-6、用法 10-6-1、数据准备 10-6-2、代码示例 10-6-3、结果输出 11、pandas.ExcelFile类 11-1、语法 11-2、参数 11-3、功能 11-4、返回值 …...
【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1
每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
【JavaWeb】Docker项目部署
引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...
CMake控制VS2022项目文件分组
我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...
python执行测试用例,allure报乱码且未成功生成报告
allure执行测试用例时显示乱码:‘allure’ �����ڲ����ⲿ���Ҳ���ǿ�&am…...
Typeerror: cannot read properties of undefined (reading ‘XXX‘)
最近需要在离线机器上运行软件,所以得把软件用docker打包起来,大部分功能都没问题,出了一个奇怪的事情。同样的代码,在本机上用vscode可以运行起来,但是打包之后在docker里出现了问题。使用的是dialog组件,…...
无人机侦测与反制技术的进展与应用
国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...
快刀集(1): 一刀斩断视频片头广告
一刀流:用一个简单脚本,秒杀视频片头广告,还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农,平时写代码之余看看电影、补补片,是再正常不过的事。 电影嘛,要沉浸,…...
