当前位置: 首页 > news >正文

【PYG】dataloader和densedataloader

DenseDataLoader 是专门用于处理稠密图数据的,而 DataLoader 通常用于处理稀疏图数据。两者的主要区别在于它们的输入数据格式和处理方式。DenseDataLoader 适合处理固定大小的邻接矩阵和节点特征矩阵的数据,而 DataLoader 更加灵活,可以处理稀疏表示的图数据。

主要区别

  • DataLoader:

    • 适合处理稀疏图数据。
    • 通常与 torch_geometric.data.Data 一起使用,其中边索引是稀疏表示的。
    • 更加灵活,适合处理各种不同形状和大小的图。
  • DenseDataLoader:

    • 适合处理稠密图数据。
    • 通常与固定大小的邻接矩阵和节点特征矩阵一起使用。
    • 更高效地处理固定大小的图数据。

使用示例

使用 DenseDataLoader

如果你有固定大小的邻接矩阵和节点特征矩阵,可以直接使用 DenseDataLoader 加载数据:

1. 导入必要的库
import torch
from torch_geometric.data import Data
from torch_geometric.loader import DenseDataLoader
2. 定义数据集类
class MyDenseDataset(torch.utils.data.Dataset):def __init__(self, num_samples, num_nodes, num_node_features):self.num_samples = num_samplesself.num_nodes = num_nodesself.num_node_features = num_node_featuresself.adj_matrix = self.create_adj_matrix(num_nodes)def create_adj_matrix(self, num_nodes):# 创建环形图的邻接矩阵adj_matrix = torch.zeros((num_nodes, num_nodes), dtype=torch.float)for i in range(num_nodes):adj_matrix[i, (i + 1) % num_nodes] = 1adj_matrix[(i + 1) % num_nodes, i] = 1return adj_matrixdef __len__(self):return self.num_samplesdef __getitem__(self, idx):# 创建随机特征和标签x = torch.randn((self.num_nodes, self.num_node_features))y = torch.randn((self.num_nodes, 1))  # 每个节点一个标签return Data(x=x, adj=self.adj_matrix, y=y)
3. 创建数据集和封装数据
# 参数设置
num_samples = 100  # 样本数
num_nodes = 10  # 每个图中的节点数
num_node_features = 8  # 每个节点的特征数# 创建数据集
dataset = MyDenseDataset(num_samples, num_nodes, num_node_features)
4. 使用 DenseDataLoader
# 使用 DenseDataLoader 加载数据
loader = DenseDataLoader(dataset, batch_size=32, shuffle=True)# 从 DenseDataLoader 中获取一个批次的数据并查看其形状
for data in loader:print("Batch node features shape:", data.x.shape)  # 期望输出形状为 (32, 10, 8)print("Batch adjacency matrix shape:", data.adj.shape)  # 期望输出形状为 (32, 10, 10)print("Batch labels shape:", data.y.shape)  # 期望输出形状为 (32, 10, 1)break  # 仅查看第一个批次的形状

解释

  1. 导入库

    • 导入 torchtorch_geometric.data 中的 Datatorch_geometric.loader 中的 DenseDataLoader
  2. 定义 MyDenseDataset

    • __init__ 方法初始化数据集参数,并创建邻接矩阵。
    • create_adj_matrix 方法创建环形图的邻接矩阵。
    • __len__ 方法返回数据集的样本数量。
    • __getitem__ 方法生成每个样本的随机节点特征和标签,并返回节点特征矩阵、邻接矩阵和标签。
  3. 创建数据集

    • 使用 MyDenseDataset 类创建一个包含 100 个样本的数据集,每个样本包含 10 个节点,每个节点有 8 个特征。
  4. 使用 DenseDataLoader

    • 使用 DenseDataLoader 加载 dataset,设置批次大小为 32,并进行随机打乱。
    • 在获取一个批次的数据时,检查 xadjy 的形状,以确保其符合期望的三维形状。

通过这个完整的示例代码,你可以生成、封装和加载稠密图数据,并确保每个批次的数据形状保持正确。这种方法适合处理节点数和边数固定的图数据,提高数据加载和处理的效率。

定义数据集类并使用 DenseDataLoader

import torch
from torch_geometric.data import Data
from torch_geometric.loader import DenseDataLoader  # 更新导入路径class MyDenseDataset(torch.utils.data.Dataset):def __init__(self, num_samples, num_nodes, num_node_features):self.num_samples = num_samplesself.num_nodes = num_nodesself.num_node_features = num_node_featuresself.adj_matrix = self.create_adj_matrix(num_nodes)def create_adj_matrix(self, num_nodes):# 创建环形图的邻接矩阵adj_matrix = torch.zeros((num_nodes, num_nodes), dtype=torch.float)for i in range(num_nodes):adj_matrix[i, (i + 1) % num_nodes] = 1adj_matrix[(i + 1) % num_nodes, i] = 1print(adj_matrix)return adj_matrixdef __len__(self):return self.num_samplesdef __getitem__(self, idx):# 创建随机特征和标签x = torch.randn((self.num_nodes, self.num_node_features))y = torch.randn((self.num_nodes, 1))  # 每个节点一个标签return Data(x, self.adj_matrix, y=y)# 创建数据集
num_samples = 100  # 样本数
num_nodes = 10  # 每个图中的节点数
num_node_features = 8  # 每个节点的特征数
dataset = MyDenseDataset(num_samples, num_nodes, num_node_features)# 使用 DenseDataLoader 加载数据
loader = DenseDataLoader(dataset, batch_size=32, shuffle=True)# 从 DenseDataLoader 中获取一个批次的数据并查看其形状
for data in loader:print("Batch node features shape:", data.x.shape)  # 期望输出形状为 (32, 10, 8)# print("Batch adjacency matrix shape:", data.adj.shape)  # 期望输出形状为 (32, 10, 10)print("Batch labels shape:", data.y.shape)  # 期望输出形状为 (32, 10, 1)break  # 仅查看第一个批次的形状

使用 DataLoader

如果你使用的是 DataLoader,则数据应当是 torch_geometric.data.Data 对象,并将数据封装在列表中:

import torch
from torch_geometric.data import Data
from torch_geometric.loader import DataLoader  # 更新导入路径class MyDataset(torch.utils.data.Dataset):def __init__(self, num_samples, num_nodes, num_node_features):self.num_samples = num_samplesself.num_nodes = num_nodesself.num_node_features = num_node_featuresdef __len__(self):return self.num_samplesdef __getitem__(self, idx):x = torch.randn(self.num_nodes, self.num_node_features)edge_index = torch.tensor([[i, (i + 1) % self.num_nodes] for i in range(self.num_nodes)], dtype=torch.long).t().contiguous()y = torch.randn(self.num_nodes, 1)return Data(x=x, edge_index=edge_index, y=y)# 创建数据集
num_samples = 100  # 样本数
num_nodes = 10  # 每个图中的节点数
num_node_features = 8  # 每个节点的特征数
dataset = MyDataset(num_samples, num_nodes, num_node_features)# 使用 DataLoader 加载数据
loader = DataLoader(dataset, batch_size=32, shuffle=True)# 迭代加载数据
for batch in loader:print("Batch node features shape:", batch.x.shape)  # 期望输出形状为 (320, 8)print("Batch edge index shape:", batch.edge_index.shape)

总结

  • DenseDataLoader:处理固定大小的邻接矩阵和节点特征矩阵的数据,__getitem__ 返回Data(x, adj, y)。
  • DataLoader:处理 torch_geometric.data.Data 对象,__getitem__ 返回一个 Data 对象。

确保数据格式与使用的加载器相匹配,以避免属性错误和其他兼容性问题。

相关文章:

【PYG】dataloader和densedataloader

DenseDataLoader 是专门用于处理稠密图数据的,而 DataLoader 通常用于处理稀疏图数据。两者的主要区别在于它们的输入数据格式和处理方式。DenseDataLoader 适合处理固定大小的邻接矩阵和节点特征矩阵的数据,而 DataLoader 更加灵活,可以处理…...

完美解决ERROR 1045 (28000): Access denied for user ‘root‘@‘localhost‘ (using password: NO)

已解决ERROR 1045 (28000): Access denied for user ‘root‘‘localhost‘ (using password: NO) 下滑查看解决方法 文章目录 报错问题解决思路解决方法交流 报错问题 ERROR 1045 (28000): Access denied for user ‘root‘‘localhost‘ (using password: NO) 解决思路 对…...

ForkJoinPool 简介

引言 在现代并行编程中,处理大规模任务时将任务分割成更小的子任务并行执行是一种常见的策略。Java 提供了 Fork/Join 框架来支持这一模式,其中 ForkJoinPool 是其核心组件。本文将详细介绍 ForkJoinPool 的概念、使用方法和实际应用。 1. ForkJoinPoo…...

复现YOLO_ORB_SLAM3_with_pointcloud_map项目记录

文章目录 1.环境问题2.遇到的问题2.1编译问题1 monotonic_clock2.2 associate.py2.3 associate.py问题 3.运行问题 1.环境问题 首先环境大家就按照github上的指定环境安装即可 环境怎么安装网上大把的资源,自己去找。 2.遇到的问题 2.1编译问题1 monotonic_cloc…...

Docker:Docker网络

Docker Network 是 Docker 平台中的一项功能,允许容器相互通信以及与外界通信。它提供了一种在 Docker 环境中创建和管理虚拟网络的方法。Docker 网络使容器能够连接到一个或多个网络,从而使它们能够安全地共享信息和资源。 预备知识 推荐先看视频先有…...

Ubuntu 24.04-自动安装-Nvidia驱动

教程 但在安全启动模式下可能会报错。 先在Nvidia官网找到GPU对应的驱动版, 1. 在软件与更新中选择合适的驱动 2. ubuntu自动安装驱动 sudo ubuntu-drivers autoinstall显示驱动 ubuntu-drivers devices3. 安装你想要的驱动 sudo apt install nvidia-driver-ve…...

【CSAPP】-attacklab实验

目录 实验目的与要求 实验原理与内容 实验设备与软件环境 实验过程与结果(可贴图) 实验总结 实验目的与要求 1. 强化机器级表示、汇编语言、调试器和逆向工程等方面基础知识,并结合栈帧工作原理实现简单的栈溢出攻击,掌握其基…...

docker部署onlyoffice,开启JWT权限校验Token

原来的部署方式 之前的方式是禁用了JWT: docker run -itd -p 8080:80 --name docserver --network host -e JWT_ENABLEDfalse --restartalways onlyoffice/documentserver:8 新的部署方式 参考文档:https://helpcenter.onlyoffice.com/installation/…...

Hive排序字段解析

Hive排序字段解析 在Hive中,CLUSTER BY、DISTRIBUTE BY、SORT BY和ORDER BY是用于数据分发和排序的关键子句,它们各自有不同的用途和性能特点。让我们逐一解析这些子句: 1. DISTRIBUTE BY 用途: 主要用于控制如何将数据分发到Reducer。它可…...

3101.力扣每日一题7/6 Java(接近100%解法)

博客主页:音符犹如代码系列专栏:算法练习关注博主,后期持续更新系列文章如果有错误感谢请大家批评指出,及时修改感谢大家点赞👍收藏⭐评论✍ 目录 思路 解题方法 时间复杂度 空间复杂度 Code 思路 主要是基于对…...

virtualbox窗口和win10窗口的切换

1、问题: 从windows切换到虚拟机可以用快捷键 ALTTAB,但是从虚拟机到windows使用 ALTTAB 无法成功切换 2、解决方法: 按下图操作 按上面步骤设置之后,每次要从虚拟机窗口切换到windows窗口 只需要先按 CtrlAlt 跳出虚拟机窗口&…...

卫星轨道平面简单认识

目录 一、轨道平面 1.1 轨道根数 1.2 应用考虑 二、分类 2.1 根据运行高度 2.2 根据运行轨迹偏心率 2.3 根据倾角大小 三、卫星星座中的轨道平面 四、设计轨道平面的考虑因素 一、轨道平面 1.1 轨道根数 轨道平面是定义卫星或其他天体绕行另一天体运动的平面。这个平…...

IP-Guard定制函数配置说明

设置客户端配置屏蔽: 关键字:disfunc_austascrtrd 内容:1 策略效果:屏幕整个屏幕监控模块。会导致屏幕历史查询这个功能也不能使用。 security_proxy1 安全代理参数 safe_enforce_authproc进程 强制软件上 安全代理网关&#xf…...

C++常用类

C常用类 1. std::string类2. std::vector 类2.1 特性2.2 用法 1. std::string类 std::string 是 C 标准库中的一个类,用于处理字符串。它提供了许多方法来创建、操作和管理字符串,如连接、查找、比较、替换和分割等操作。std::string 类定义在 头文件中…...

React Hooks --- 分享自己开发中常用的自定义的Hooks (1)

为什么要使用自定义 Hooks 自定义 Hooks 是 React 中一种复用逻辑的机制,通过它们可以抽离组件中的逻辑,使代码更加简洁、易读、易维护。它们可以在多个组件中复用相同的逻辑,减少重复代码。 1、useThrottle 代码 import React,{ useRef,…...

uniapp H5页面设置跨域请求

记录一下本地服务在uniapp H5页面访问请求报跨域的错误 这是我在本地起的服务端口号为8088 ip大家可打开cmd 输入ipconfig 查看 第一种方法 在源码视图中配置 "devServer": {"https": false, // 是否启用 https 协议,默认false"port&q…...

使用myCobot280和OAK-D OpenCV DepthAI摄像头制作一个实时脸部跟踪的手机支架!

引言 由于YouTube和Netflix的出现,我们开始躺着看手机。然而,长时间用手拿着手机会让人感到疲劳。这次我们制作了一个可以在你眼前保持适当距离并调整位置的自动移动手机支架,让你无需用手拿着手机。请务必试试! 准备工作 这次我们…...

Xilinx FPGA:vivado关于单端ROM的一个只读小实验

一、实验要求 将生成好的voe文件里的数据使用rom读取出来,采用串口工具发送给电脑(当按键来临时)。 二、程序设计 按键消抖模块: timescale 1ns / 1ps module key_debounce(input sys_clk ,input rst_n…...

集成学习(一)Bagging

前边学习了:十大集成学习模型(简单版)-CSDN博客 Bagging又称为“装袋法”,它是所有集成学习方法当中最为著名、最为简单、也最为有效的操作之一。 在Bagging集成当中,我们并行建立多个弱评估器(通常是决策…...

Docker 中查看及修改 Redis 容器密码的实用指南

在使用 Docker 部署 Redis 容器时,有时我们需要查看或修改 Redis 的密码。本文将详细介绍如何在 Docker 中查看和修改 Redis 容器的密码,帮助你更好地管理和维护你的 Redis 实例。 一、查看 Redis 容器密码 通常在启动 Redis 容器时,我们会…...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

测试微信模版消息推送

进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版​分享

平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...

高频面试之3Zookeeper

高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制&#xff0…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...

C++ 基础特性深度解析

目录 引言 一、命名空间(namespace) C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用(reference)​ C 中的引用​ 与 C 语言的对比​ 四、inline(内联函数…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...