当前位置: 首页 > news >正文

Stable Diffusion:最全详细图解

Stable Diffusion,作为一种革命性的图像生成模型,自发布以来便因其卓越的生成质量和高效的计算性能而受到广泛关注。不同于以往的生成模型,Stable Diffusion在生成图像的过程中,采用了独特的扩散过程,结合深度学习技术,实现了从噪声到清晰图像的逐步演化。本文将深入浅出地解析Stable Diffusion的工作原理,通过详细的图解和实例演示,带领读者全面理解这一前沿技术。

一、Stable Diffusion概览

1.1 模型起源与特点

Stable Diffusion模型源于Diffusion Probabilistic Models,这是一种通过向初始数据添加高斯噪声,然后学习逐步去除噪声以恢复原始数据的生成模型。Stable Diffusion通过优化训练过程,提高了生成效率和图像质量,同时降低了计算资源的需求,使其成为图像生成领域的一个里程碑。

1.2 主要组件

  • 扩散过程:模型的核心,通过一系列步骤将图像从纯噪声状态逐步还原为清晰图像。
  • 反向扩散过程:学习从噪声到图像的逆向映射,是生成图像的关键。
  • 条件输入:允许模型根据特定的文本描述或其他条件生成图像,增强了生成的可控性和多样性。

二、Stable Diffusion工作原理

2.1 扩散过程

在扩散过程中,Stable Diffusion将原始图像逐渐添加噪声,直到图像完全变为随机噪声。这一过程可以表示为一系列随机变量的分布转移,即:

2.2 反向扩散过程

反向扩散过程是模型学习的重点,其目标是从噪声中逐步恢复图像。Stable Diffusion通过一个深度神经网络(通常是一个U-Net架构)学习以下条件分布:

2.3 条件生成

Stable Diffusion支持条件生成,即根据特定的输入(如文本描述)生成图像。这一特性通过在U-Net中加入额外的条件编码器实现,确保生成的图像与给定的条件相匹配。

三、Stable Diffusion图解

3.1 扩散过程图解

图中展示了一个图像从清晰状态逐渐变为噪声的过程。每一步,模型都会添加一定量的噪声,直到图像完全模糊。

3.2 反向扩散过程图解

这一图解展示了从噪声逐步恢复到清晰图像的过程。通过深度神经网络预测噪声并逐步去除,最终生成清晰的图像。

四、Stable Diffusion与其它模型的对比

4.1 与GAN的对比

  • 稳定性:Stable Diffusion相比GAN更稳定,不易出现模式崩溃或生成质量波动。
  • 生成质量:两者均能生成高质量图像,但Stable Diffusion在保持多样性的同时,生成的图像更加一致和稳定。

4.2 与VAE的对比

  • 灵活性:Stable Diffusion在生成图像时更具灵活性,可以更容易地控制生成过程和结果。
  • 训练难度:Stable Diffusion的训练相对简单,而VAE可能需要复杂的调优以获得良好性能。

五、Stable Diffusion的未来展望

随着技术的不断发展,Stable Diffusion模型有望在图像生成、视频合成、3D建模等多个领域展现更广泛的应用。其高效、稳定和可控的特性,将为AI生成内容带来更多的可能性,推动创意产业的革新。

六、结语

Stable Diffusion作为图像生成领域的一项突破性成果,不仅在学术界引起了轰动,也为广大开发者和创意工作者提供了强大的工具。通过本文的解析,我们不仅理解了Stable Diffusion的工作原理,还看到了它在实际应用中的巨大潜力。随着技术的不断进步,我们有理由相信,Stable Diffusion将在未来的AI生成内容领域发挥更加重要的作用。

相关文章:

Stable Diffusion:最全详细图解

Stable Diffusion,作为一种革命性的图像生成模型,自发布以来便因其卓越的生成质量和高效的计算性能而受到广泛关注。不同于以往的生成模型,Stable Diffusion在生成图像的过程中,采用了独特的扩散过程,结合深度学习技术…...

Apache Seata分布式事务之Seata-Client原理及流程详解

本文来自 Apache Seata官方文档,欢迎访问官网,查看更多深度文章。 本文来自 Apache Seata官方文档,欢迎访问官网,查看更多深度文章。 前言 在分布式系统中,分布式事务是一个必须要解决的问题,目前使用较多…...

Linux wget报未找到命令

wget报未找到命令需要安装wget 1、下载wget安装文件,本次于华为云资源镜像下载 地址:https://mirrors.huaweicloud.com/centos-vault/7.8.2003/os/x86_64/Packages/ 2、下载后上传到安装服务器/install_package,执行命令安装 rpm -ivh /i…...

38条Web测试经验分享

1. 页面链接检查 每一个链接是否都有对应的页面,并且页面之间切换正确。可以使用一些工具,如LinkBotPro、File-AIDCS、HTML Link Validater、Xenu等工具。 LinkBotPro不支持中文,中文字符显示为乱码;HTML Link Validater只能测…...

TCP报文校验和(checksum)计算

一. 原理 将TCP相关内容&#xff08;TCP伪头部TCP头部TCP内容&#xff09;转换成16比特的字符&#xff0c;然后进行累加&#xff0c;最后结果进行取反。TCP伪头部是固定的&#xff0c;下文有相关代码展示。 二. 源码 源码 #include <stdio.h> #include <stdlib.h&…...

【ue5】虚幻5同时开多个项目

正常开ue5项目我是直接在桌面点击快捷方式进入 只会打开一个项目 如果再想打开一个项目需要进入epic 再点击启动就可以再开一个项目了...

【Python实战因果推断】23_倾向分3

目录 Propensity Score Matching Inverse Propensity Weighting Propensity Score Matching 另一种控制倾向得分的常用方法是匹配估计法。这种方法搜索具有相似可观测特征的单位对&#xff0c;并比较接受干预与未接受干预的单位的结果。如果您有数据科学背景&#xff0c;您可…...

Qt源码解析之QObject

省去大部分virtual和public方法后&#xff0c;Qobject主要剩下以下成员&#xff1a; //qobject.h class Q_CORE_EXPORT Qobject{Q_OBJECTQ_PROPERTY(QString objectName READ objectName WRITE setObjectName NOTIFY objectNameChanged)Q_DECLARE_PRIVATE(QObject) public:Q_I…...

【算法专题】模拟算法题

模拟算法题往往不涉及复杂的数据结构或算法&#xff0c;而是侧重于对特定情景的代码实现&#xff0c;关键在于理解题目所描述的情境&#xff0c;并能够将其转化为代码逻辑。所以我们在处理这种类型的题目时&#xff0c;最好要现在演草纸上把情况理清楚&#xff0c;再动手编写代…...

分库分表真的适合你的系统吗?

曾几何时&#xff0c;“并发高就分库&#xff0c;数据大就分表”已经成了处理 MySQL 数据增长问题的圣经。 面试官喜欢问&#xff0c;博主喜欢写&#xff0c;候选人也喜欢背&#xff0c;似乎已经形成了一个闭环。 但你有没有思考过&#xff0c;分库分表真的适合你的系统吗&am…...

9 redis,memcached,nginx网络组件

课程目标: 1.网络模块要处理哪些事情 2.reactor是怎么处理这些事情的 3.reactor怎么封装 4.网络模块与业务逻辑的关系 5.怎么优化reactor? io函数 函数调用 都有两个作用:io检测 是否就绪 io操作 1. int clientfd = accept(listenfd, &addr, &len); 检测 全连接队列…...

【MySQL】事务四大特性以及实现原理

事务四大特性 原子性&#xff08;Atomicity&#xff09; 事务中的所有操作要么全部完成&#xff0c;要么全部不执行。如果事务中的任何一步失败&#xff0c;整个事务都会被回滚&#xff0c;以保持数据的完整性。 一致性&#xff08;Consistency&#xff09; 事务应确保数据库…...

【控制Android.bp的编译】

1.首先Android.bp的语法是不支持if 条件语句的 2.查到可以用enabled来控制Android.bp中的模块是否参与编译&#xff0c;但是并不能实现动态的控制&#xff0c;比如你需要根据获取到的安卓版本来控制一个Android.bp是否编译&#xff0c;是无法做到的。enabled只能是固定的true或…...

【车载开发系列】J-Link/JFlash 简介与驱动安装方法

【车载开发系列】J-Link/JFlash 简介与驱动安装方法 【车载开发系列】J-Link/JFlash 简介与驱动安装方法 【车载开发系列】J-Link/JFlash 简介与驱动安装方法一. 软件介绍二. 下载安装包二. 开始安装三. 确认安装四. J-Flash的使用 一. 软件介绍 J-Link是SEGGER公司为支持仿真…...

207 课程表

题目 你这个学期必须选修 numCourses 门课程&#xff0c;记为 0 到 numCourses - 1 。 在选修某些课程之前需要一些先修课程。 先修课程按数组 prerequisites 给出&#xff0c;其中 prerequisites[i] [ai, bi] &#xff0c;表示如果要学习课程 ai 则 必须 先学习课程 bi 。 …...

罗剑锋的C++实战笔记学习(一):const、智能指针、lambda表达式

1、const 1&#xff09;、常量 const一般的用法就是修饰变量、引用、指针&#xff0c;修饰之后它们就变成了常量&#xff0c;需要注意的是const并未区分出编译期常量和运行期常量&#xff0c;并且const只保证了运行时不直接被修改 一般的情况&#xff0c;const放在左边&…...

宁德时代天行发布,商用车超充时代来临

近日&#xff0c;宁德时代正式推出商用动力电池品牌——“宁德时代天行”&#xff0c;同时发布“宁德时代天行轻型商用车&#xff08;L&#xff09;-超充版”和“宁德时代天行轻型商用车&#xff08;L&#xff09;-长续航版”两款产品&#xff0c;可实现4C超充能力和500km的实况…...

硅纪元应用评测 | 弱智吧大战GPT4o和Claude 3.5 Sonnet

"硅纪元AI应用测评"栏目&#xff0c;深入解析和评测最新的人工智能应用&#xff0c;提供专业见解和实用建议。不论您是AI专家还是科技爱好者&#xff0c;都能找到权威、详尽的测评&#xff0c;帮助您在快速发展的AI领域中做出最佳选择。一起探索AI的真实潜力&#xf…...

注意力机制 attention Transformer 笔记

动手学深度学习 这里写自定义目录标题 注意力加性注意力缩放点积注意力多头注意力自注意力Transformer 注意力 注意力汇聚的输出为值的加权和 查询的长度为q&#xff0c;键的长度为k&#xff0c;值的长度为v。 q ∈ 1 q , k ∈ 1 k , v ∈ R 1 v {\bf{q}} \in {^{1 \times…...

开始尝试从0写一个项目--后端(二)

实现学生管理 新增学生 接口设计 请求路径&#xff1a;/admin/student 请求方法&#xff1a;POST 请求参数&#xff1a;请求头&#xff1a;Headers&#xff1a;"Content-Type": "application/json" 请求体&#xff1a;Body&#xff1a; id 学生id …...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明&#xff1a;假设每台服务器已…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止

<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet&#xff1a; https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章&#xff1f;AI自动生成&#xff0c;效率提升10倍&#xff01; 支持多语言、自动配图、定时发布&#xff0c;让内容创作更轻松&#xff01; AI内容生成 → 不想每天写文章&#xff1f;AI一键生成高质量内容&#xff01;多语言支持 → 跨境电商必备&am…...

HTML前端开发:JavaScript 常用事件详解

作为前端开发的核心&#xff0c;JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例&#xff1a; 1. onclick - 点击事件 当元素被单击时触发&#xff08;左键点击&#xff09; button.onclick function() {alert("按钮被点击了&#xff01;&…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...

MySQL的pymysql操作

本章是MySQL的最后一章&#xff0c;MySQL到此完结&#xff0c;下一站Hadoop&#xff01;&#xff01;&#xff01; 这章很简单&#xff0c;完整代码在最后&#xff0c;详细讲解之前python课程里面也有&#xff0c;感兴趣的可以往前找一下 一、查询操作 我们需要打开pycharm …...

算术操作符与类型转换:从基础到精通

目录 前言&#xff1a;从基础到实践——探索运算符与类型转换的奥秘 算术操作符超级详解 算术操作符&#xff1a;、-、*、/、% 赋值操作符&#xff1a;和复合赋值 单⽬操作符&#xff1a;、--、、- 前言&#xff1a;从基础到实践——探索运算符与类型转换的奥秘 在先前的文…...