当前位置: 首页 > news >正文

Stable Diffusion:最全详细图解

Stable Diffusion,作为一种革命性的图像生成模型,自发布以来便因其卓越的生成质量和高效的计算性能而受到广泛关注。不同于以往的生成模型,Stable Diffusion在生成图像的过程中,采用了独特的扩散过程,结合深度学习技术,实现了从噪声到清晰图像的逐步演化。本文将深入浅出地解析Stable Diffusion的工作原理,通过详细的图解和实例演示,带领读者全面理解这一前沿技术。

一、Stable Diffusion概览

1.1 模型起源与特点

Stable Diffusion模型源于Diffusion Probabilistic Models,这是一种通过向初始数据添加高斯噪声,然后学习逐步去除噪声以恢复原始数据的生成模型。Stable Diffusion通过优化训练过程,提高了生成效率和图像质量,同时降低了计算资源的需求,使其成为图像生成领域的一个里程碑。

1.2 主要组件

  • 扩散过程:模型的核心,通过一系列步骤将图像从纯噪声状态逐步还原为清晰图像。
  • 反向扩散过程:学习从噪声到图像的逆向映射,是生成图像的关键。
  • 条件输入:允许模型根据特定的文本描述或其他条件生成图像,增强了生成的可控性和多样性。

二、Stable Diffusion工作原理

2.1 扩散过程

在扩散过程中,Stable Diffusion将原始图像逐渐添加噪声,直到图像完全变为随机噪声。这一过程可以表示为一系列随机变量的分布转移,即:

2.2 反向扩散过程

反向扩散过程是模型学习的重点,其目标是从噪声中逐步恢复图像。Stable Diffusion通过一个深度神经网络(通常是一个U-Net架构)学习以下条件分布:

2.3 条件生成

Stable Diffusion支持条件生成,即根据特定的输入(如文本描述)生成图像。这一特性通过在U-Net中加入额外的条件编码器实现,确保生成的图像与给定的条件相匹配。

三、Stable Diffusion图解

3.1 扩散过程图解

图中展示了一个图像从清晰状态逐渐变为噪声的过程。每一步,模型都会添加一定量的噪声,直到图像完全模糊。

3.2 反向扩散过程图解

这一图解展示了从噪声逐步恢复到清晰图像的过程。通过深度神经网络预测噪声并逐步去除,最终生成清晰的图像。

四、Stable Diffusion与其它模型的对比

4.1 与GAN的对比

  • 稳定性:Stable Diffusion相比GAN更稳定,不易出现模式崩溃或生成质量波动。
  • 生成质量:两者均能生成高质量图像,但Stable Diffusion在保持多样性的同时,生成的图像更加一致和稳定。

4.2 与VAE的对比

  • 灵活性:Stable Diffusion在生成图像时更具灵活性,可以更容易地控制生成过程和结果。
  • 训练难度:Stable Diffusion的训练相对简单,而VAE可能需要复杂的调优以获得良好性能。

五、Stable Diffusion的未来展望

随着技术的不断发展,Stable Diffusion模型有望在图像生成、视频合成、3D建模等多个领域展现更广泛的应用。其高效、稳定和可控的特性,将为AI生成内容带来更多的可能性,推动创意产业的革新。

六、结语

Stable Diffusion作为图像生成领域的一项突破性成果,不仅在学术界引起了轰动,也为广大开发者和创意工作者提供了强大的工具。通过本文的解析,我们不仅理解了Stable Diffusion的工作原理,还看到了它在实际应用中的巨大潜力。随着技术的不断进步,我们有理由相信,Stable Diffusion将在未来的AI生成内容领域发挥更加重要的作用。

相关文章:

Stable Diffusion:最全详细图解

Stable Diffusion,作为一种革命性的图像生成模型,自发布以来便因其卓越的生成质量和高效的计算性能而受到广泛关注。不同于以往的生成模型,Stable Diffusion在生成图像的过程中,采用了独特的扩散过程,结合深度学习技术…...

Apache Seata分布式事务之Seata-Client原理及流程详解

本文来自 Apache Seata官方文档,欢迎访问官网,查看更多深度文章。 本文来自 Apache Seata官方文档,欢迎访问官网,查看更多深度文章。 前言 在分布式系统中,分布式事务是一个必须要解决的问题,目前使用较多…...

Linux wget报未找到命令

wget报未找到命令需要安装wget 1、下载wget安装文件,本次于华为云资源镜像下载 地址:https://mirrors.huaweicloud.com/centos-vault/7.8.2003/os/x86_64/Packages/ 2、下载后上传到安装服务器/install_package,执行命令安装 rpm -ivh /i…...

38条Web测试经验分享

1. 页面链接检查 每一个链接是否都有对应的页面,并且页面之间切换正确。可以使用一些工具,如LinkBotPro、File-AIDCS、HTML Link Validater、Xenu等工具。 LinkBotPro不支持中文,中文字符显示为乱码;HTML Link Validater只能测…...

TCP报文校验和(checksum)计算

一. 原理 将TCP相关内容&#xff08;TCP伪头部TCP头部TCP内容&#xff09;转换成16比特的字符&#xff0c;然后进行累加&#xff0c;最后结果进行取反。TCP伪头部是固定的&#xff0c;下文有相关代码展示。 二. 源码 源码 #include <stdio.h> #include <stdlib.h&…...

【ue5】虚幻5同时开多个项目

正常开ue5项目我是直接在桌面点击快捷方式进入 只会打开一个项目 如果再想打开一个项目需要进入epic 再点击启动就可以再开一个项目了...

【Python实战因果推断】23_倾向分3

目录 Propensity Score Matching Inverse Propensity Weighting Propensity Score Matching 另一种控制倾向得分的常用方法是匹配估计法。这种方法搜索具有相似可观测特征的单位对&#xff0c;并比较接受干预与未接受干预的单位的结果。如果您有数据科学背景&#xff0c;您可…...

Qt源码解析之QObject

省去大部分virtual和public方法后&#xff0c;Qobject主要剩下以下成员&#xff1a; //qobject.h class Q_CORE_EXPORT Qobject{Q_OBJECTQ_PROPERTY(QString objectName READ objectName WRITE setObjectName NOTIFY objectNameChanged)Q_DECLARE_PRIVATE(QObject) public:Q_I…...

【算法专题】模拟算法题

模拟算法题往往不涉及复杂的数据结构或算法&#xff0c;而是侧重于对特定情景的代码实现&#xff0c;关键在于理解题目所描述的情境&#xff0c;并能够将其转化为代码逻辑。所以我们在处理这种类型的题目时&#xff0c;最好要现在演草纸上把情况理清楚&#xff0c;再动手编写代…...

分库分表真的适合你的系统吗?

曾几何时&#xff0c;“并发高就分库&#xff0c;数据大就分表”已经成了处理 MySQL 数据增长问题的圣经。 面试官喜欢问&#xff0c;博主喜欢写&#xff0c;候选人也喜欢背&#xff0c;似乎已经形成了一个闭环。 但你有没有思考过&#xff0c;分库分表真的适合你的系统吗&am…...

9 redis,memcached,nginx网络组件

课程目标: 1.网络模块要处理哪些事情 2.reactor是怎么处理这些事情的 3.reactor怎么封装 4.网络模块与业务逻辑的关系 5.怎么优化reactor? io函数 函数调用 都有两个作用:io检测 是否就绪 io操作 1. int clientfd = accept(listenfd, &addr, &len); 检测 全连接队列…...

【MySQL】事务四大特性以及实现原理

事务四大特性 原子性&#xff08;Atomicity&#xff09; 事务中的所有操作要么全部完成&#xff0c;要么全部不执行。如果事务中的任何一步失败&#xff0c;整个事务都会被回滚&#xff0c;以保持数据的完整性。 一致性&#xff08;Consistency&#xff09; 事务应确保数据库…...

【控制Android.bp的编译】

1.首先Android.bp的语法是不支持if 条件语句的 2.查到可以用enabled来控制Android.bp中的模块是否参与编译&#xff0c;但是并不能实现动态的控制&#xff0c;比如你需要根据获取到的安卓版本来控制一个Android.bp是否编译&#xff0c;是无法做到的。enabled只能是固定的true或…...

【车载开发系列】J-Link/JFlash 简介与驱动安装方法

【车载开发系列】J-Link/JFlash 简介与驱动安装方法 【车载开发系列】J-Link/JFlash 简介与驱动安装方法 【车载开发系列】J-Link/JFlash 简介与驱动安装方法一. 软件介绍二. 下载安装包二. 开始安装三. 确认安装四. J-Flash的使用 一. 软件介绍 J-Link是SEGGER公司为支持仿真…...

207 课程表

题目 你这个学期必须选修 numCourses 门课程&#xff0c;记为 0 到 numCourses - 1 。 在选修某些课程之前需要一些先修课程。 先修课程按数组 prerequisites 给出&#xff0c;其中 prerequisites[i] [ai, bi] &#xff0c;表示如果要学习课程 ai 则 必须 先学习课程 bi 。 …...

罗剑锋的C++实战笔记学习(一):const、智能指针、lambda表达式

1、const 1&#xff09;、常量 const一般的用法就是修饰变量、引用、指针&#xff0c;修饰之后它们就变成了常量&#xff0c;需要注意的是const并未区分出编译期常量和运行期常量&#xff0c;并且const只保证了运行时不直接被修改 一般的情况&#xff0c;const放在左边&…...

宁德时代天行发布,商用车超充时代来临

近日&#xff0c;宁德时代正式推出商用动力电池品牌——“宁德时代天行”&#xff0c;同时发布“宁德时代天行轻型商用车&#xff08;L&#xff09;-超充版”和“宁德时代天行轻型商用车&#xff08;L&#xff09;-长续航版”两款产品&#xff0c;可实现4C超充能力和500km的实况…...

硅纪元应用评测 | 弱智吧大战GPT4o和Claude 3.5 Sonnet

"硅纪元AI应用测评"栏目&#xff0c;深入解析和评测最新的人工智能应用&#xff0c;提供专业见解和实用建议。不论您是AI专家还是科技爱好者&#xff0c;都能找到权威、详尽的测评&#xff0c;帮助您在快速发展的AI领域中做出最佳选择。一起探索AI的真实潜力&#xf…...

注意力机制 attention Transformer 笔记

动手学深度学习 这里写自定义目录标题 注意力加性注意力缩放点积注意力多头注意力自注意力Transformer 注意力 注意力汇聚的输出为值的加权和 查询的长度为q&#xff0c;键的长度为k&#xff0c;值的长度为v。 q ∈ 1 q , k ∈ 1 k , v ∈ R 1 v {\bf{q}} \in {^{1 \times…...

开始尝试从0写一个项目--后端(二)

实现学生管理 新增学生 接口设计 请求路径&#xff1a;/admin/student 请求方法&#xff1a;POST 请求参数&#xff1a;请求头&#xff1a;Headers&#xff1a;"Content-Type": "application/json" 请求体&#xff1a;Body&#xff1a; id 学生id …...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

C++实现分布式网络通信框架RPC(3)--rpc调用端

目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中&#xff0c;我们已经大致实现了rpc服务端的各项功能代…...

stm32G473的flash模式是单bank还是双bank?

今天突然有人stm32G473的flash模式是单bank还是双bank&#xff1f;由于时间太久&#xff0c;我真忘记了。搜搜发现&#xff0c;还真有人和我一样。见下面的链接&#xff1a;https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程&#xff0c;并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令&#xff0c;把数据流转换成Message&#xff0c;状态转变流程是&#xff1a;State::Created 》 St…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中&#xff0c;性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期&#xff0c;开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发&#xff0c;但背后往往隐藏着系统资源调度不当…...

C语言中提供的第三方库之哈希表实现

一. 简介 前面一篇文章简单学习了C语言中第三方库&#xff08;uthash库&#xff09;提供对哈希表的操作&#xff0c;文章如下&#xff1a; C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...

libfmt: 现代C++的格式化工具库介绍与酷炫功能

libfmt: 现代C的格式化工具库介绍与酷炫功能 libfmt 是一个开源的C格式化库&#xff0c;提供了高效、安全的文本格式化功能&#xff0c;是C20中引入的std::format的基础实现。它比传统的printf和iostream更安全、更灵活、性能更好。 基本介绍 主要特点 类型安全&#xff1a…...

协议转换利器,profinet转ethercat网关的两大派系,各有千秋

随着工业以太网的发展&#xff0c;其高效、便捷、协议开放、易于冗余等诸多优点&#xff0c;被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口&#xff0c;具有实时性、开放性&#xff0c;使用TCP/IP和IT标准&#xff0c;符合基于工业以太网的…...

DAY 26 函数专题1

函数定义与参数知识点回顾&#xff1a;1. 函数的定义2. 变量作用域&#xff1a;局部变量和全局变量3. 函数的参数类型&#xff1a;位置参数、默认参数、不定参数4. 传递参数的手段&#xff1a;关键词参数5 题目1&#xff1a;计算圆的面积 任务&#xff1a; 编写一…...