Stable Diffusion:最全详细图解
Stable Diffusion,作为一种革命性的图像生成模型,自发布以来便因其卓越的生成质量和高效的计算性能而受到广泛关注。不同于以往的生成模型,Stable Diffusion在生成图像的过程中,采用了独特的扩散过程,结合深度学习技术,实现了从噪声到清晰图像的逐步演化。本文将深入浅出地解析Stable Diffusion的工作原理,通过详细的图解和实例演示,带领读者全面理解这一前沿技术。
一、Stable Diffusion概览
1.1 模型起源与特点
Stable Diffusion模型源于Diffusion Probabilistic Models,这是一种通过向初始数据添加高斯噪声,然后学习逐步去除噪声以恢复原始数据的生成模型。Stable Diffusion通过优化训练过程,提高了生成效率和图像质量,同时降低了计算资源的需求,使其成为图像生成领域的一个里程碑。
1.2 主要组件
- 扩散过程:模型的核心,通过一系列步骤将图像从纯噪声状态逐步还原为清晰图像。
- 反向扩散过程:学习从噪声到图像的逆向映射,是生成图像的关键。
- 条件输入:允许模型根据特定的文本描述或其他条件生成图像,增强了生成的可控性和多样性。
二、Stable Diffusion工作原理
2.1 扩散过程
在扩散过程中,Stable Diffusion将原始图像逐渐添加噪声,直到图像完全变为随机噪声。这一过程可以表示为一系列随机变量的分布转移,即:

2.2 反向扩散过程
反向扩散过程是模型学习的重点,其目标是从噪声中逐步恢复图像。Stable Diffusion通过一个深度神经网络(通常是一个U-Net架构)学习以下条件分布:

2.3 条件生成
Stable Diffusion支持条件生成,即根据特定的输入(如文本描述)生成图像。这一特性通过在U-Net中加入额外的条件编码器实现,确保生成的图像与给定的条件相匹配。
三、Stable Diffusion图解
3.1 扩散过程图解

图中展示了一个图像从清晰状态逐渐变为噪声的过程。每一步,模型都会添加一定量的噪声,直到图像完全模糊。
3.2 反向扩散过程图解

这一图解展示了从噪声逐步恢复到清晰图像的过程。通过深度神经网络预测噪声并逐步去除,最终生成清晰的图像。
四、Stable Diffusion与其它模型的对比
4.1 与GAN的对比
- 稳定性:Stable Diffusion相比GAN更稳定,不易出现模式崩溃或生成质量波动。
- 生成质量:两者均能生成高质量图像,但Stable Diffusion在保持多样性的同时,生成的图像更加一致和稳定。
4.2 与VAE的对比
- 灵活性:Stable Diffusion在生成图像时更具灵活性,可以更容易地控制生成过程和结果。
- 训练难度:Stable Diffusion的训练相对简单,而VAE可能需要复杂的调优以获得良好性能。
五、Stable Diffusion的未来展望
随着技术的不断发展,Stable Diffusion模型有望在图像生成、视频合成、3D建模等多个领域展现更广泛的应用。其高效、稳定和可控的特性,将为AI生成内容带来更多的可能性,推动创意产业的革新。
六、结语
Stable Diffusion作为图像生成领域的一项突破性成果,不仅在学术界引起了轰动,也为广大开发者和创意工作者提供了强大的工具。通过本文的解析,我们不仅理解了Stable Diffusion的工作原理,还看到了它在实际应用中的巨大潜力。随着技术的不断进步,我们有理由相信,Stable Diffusion将在未来的AI生成内容领域发挥更加重要的作用。
相关文章:
Stable Diffusion:最全详细图解
Stable Diffusion,作为一种革命性的图像生成模型,自发布以来便因其卓越的生成质量和高效的计算性能而受到广泛关注。不同于以往的生成模型,Stable Diffusion在生成图像的过程中,采用了独特的扩散过程,结合深度学习技术…...
Apache Seata分布式事务之Seata-Client原理及流程详解
本文来自 Apache Seata官方文档,欢迎访问官网,查看更多深度文章。 本文来自 Apache Seata官方文档,欢迎访问官网,查看更多深度文章。 前言 在分布式系统中,分布式事务是一个必须要解决的问题,目前使用较多…...
Linux wget报未找到命令
wget报未找到命令需要安装wget 1、下载wget安装文件,本次于华为云资源镜像下载 地址:https://mirrors.huaweicloud.com/centos-vault/7.8.2003/os/x86_64/Packages/ 2、下载后上传到安装服务器/install_package,执行命令安装 rpm -ivh /i…...
38条Web测试经验分享
1. 页面链接检查 每一个链接是否都有对应的页面,并且页面之间切换正确。可以使用一些工具,如LinkBotPro、File-AIDCS、HTML Link Validater、Xenu等工具。 LinkBotPro不支持中文,中文字符显示为乱码;HTML Link Validater只能测…...
TCP报文校验和(checksum)计算
一. 原理 将TCP相关内容(TCP伪头部TCP头部TCP内容)转换成16比特的字符,然后进行累加,最后结果进行取反。TCP伪头部是固定的,下文有相关代码展示。 二. 源码 源码 #include <stdio.h> #include <stdlib.h&…...
【ue5】虚幻5同时开多个项目
正常开ue5项目我是直接在桌面点击快捷方式进入 只会打开一个项目 如果再想打开一个项目需要进入epic 再点击启动就可以再开一个项目了...
【Python实战因果推断】23_倾向分3
目录 Propensity Score Matching Inverse Propensity Weighting Propensity Score Matching 另一种控制倾向得分的常用方法是匹配估计法。这种方法搜索具有相似可观测特征的单位对,并比较接受干预与未接受干预的单位的结果。如果您有数据科学背景,您可…...
Qt源码解析之QObject
省去大部分virtual和public方法后,Qobject主要剩下以下成员: //qobject.h class Q_CORE_EXPORT Qobject{Q_OBJECTQ_PROPERTY(QString objectName READ objectName WRITE setObjectName NOTIFY objectNameChanged)Q_DECLARE_PRIVATE(QObject) public:Q_I…...
【算法专题】模拟算法题
模拟算法题往往不涉及复杂的数据结构或算法,而是侧重于对特定情景的代码实现,关键在于理解题目所描述的情境,并能够将其转化为代码逻辑。所以我们在处理这种类型的题目时,最好要现在演草纸上把情况理清楚,再动手编写代…...
分库分表真的适合你的系统吗?
曾几何时,“并发高就分库,数据大就分表”已经成了处理 MySQL 数据增长问题的圣经。 面试官喜欢问,博主喜欢写,候选人也喜欢背,似乎已经形成了一个闭环。 但你有没有思考过,分库分表真的适合你的系统吗&am…...
9 redis,memcached,nginx网络组件
课程目标: 1.网络模块要处理哪些事情 2.reactor是怎么处理这些事情的 3.reactor怎么封装 4.网络模块与业务逻辑的关系 5.怎么优化reactor? io函数 函数调用 都有两个作用:io检测 是否就绪 io操作 1. int clientfd = accept(listenfd, &addr, &len); 检测 全连接队列…...
【MySQL】事务四大特性以及实现原理
事务四大特性 原子性(Atomicity) 事务中的所有操作要么全部完成,要么全部不执行。如果事务中的任何一步失败,整个事务都会被回滚,以保持数据的完整性。 一致性(Consistency) 事务应确保数据库…...
【控制Android.bp的编译】
1.首先Android.bp的语法是不支持if 条件语句的 2.查到可以用enabled来控制Android.bp中的模块是否参与编译,但是并不能实现动态的控制,比如你需要根据获取到的安卓版本来控制一个Android.bp是否编译,是无法做到的。enabled只能是固定的true或…...
【车载开发系列】J-Link/JFlash 简介与驱动安装方法
【车载开发系列】J-Link/JFlash 简介与驱动安装方法 【车载开发系列】J-Link/JFlash 简介与驱动安装方法 【车载开发系列】J-Link/JFlash 简介与驱动安装方法一. 软件介绍二. 下载安装包二. 开始安装三. 确认安装四. J-Flash的使用 一. 软件介绍 J-Link是SEGGER公司为支持仿真…...
207 课程表
题目 你这个学期必须选修 numCourses 门课程,记为 0 到 numCourses - 1 。 在选修某些课程之前需要一些先修课程。 先修课程按数组 prerequisites 给出,其中 prerequisites[i] [ai, bi] ,表示如果要学习课程 ai 则 必须 先学习课程 bi 。 …...
罗剑锋的C++实战笔记学习(一):const、智能指针、lambda表达式
1、const 1)、常量 const一般的用法就是修饰变量、引用、指针,修饰之后它们就变成了常量,需要注意的是const并未区分出编译期常量和运行期常量,并且const只保证了运行时不直接被修改 一般的情况,const放在左边&…...
宁德时代天行发布,商用车超充时代来临
近日,宁德时代正式推出商用动力电池品牌——“宁德时代天行”,同时发布“宁德时代天行轻型商用车(L)-超充版”和“宁德时代天行轻型商用车(L)-长续航版”两款产品,可实现4C超充能力和500km的实况…...
硅纪元应用评测 | 弱智吧大战GPT4o和Claude 3.5 Sonnet
"硅纪元AI应用测评"栏目,深入解析和评测最新的人工智能应用,提供专业见解和实用建议。不论您是AI专家还是科技爱好者,都能找到权威、详尽的测评,帮助您在快速发展的AI领域中做出最佳选择。一起探索AI的真实潜力…...
注意力机制 attention Transformer 笔记
动手学深度学习 这里写自定义目录标题 注意力加性注意力缩放点积注意力多头注意力自注意力Transformer 注意力 注意力汇聚的输出为值的加权和 查询的长度为q,键的长度为k,值的长度为v。 q ∈ 1 q , k ∈ 1 k , v ∈ R 1 v {\bf{q}} \in {^{1 \times…...
开始尝试从0写一个项目--后端(二)
实现学生管理 新增学生 接口设计 请求路径:/admin/student 请求方法:POST 请求参数:请求头:Headers:"Content-Type": "application/json" 请求体:Body: id 学生id …...
ETLCloud可能遇到的问题有哪些?常见坑位解析
数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...
如何在Windows本机安装Python并确保与Python.NET兼容
✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…...
React核心概念:State是什么?如何用useState管理组件自己的数据?
系列回顾: 在上一篇《React入门第一步》中,我们已经成功创建并运行了第一个React项目。我们学会了用Vite初始化项目,并修改了App.jsx组件,让页面显示出我们想要的文字。但是,那个页面是“死”的,它只是静态…...
LangChain【6】之输出解析器:结构化LLM响应的关键工具
文章目录 一 LangChain输出解析器概述1.1 什么是输出解析器?1.2 主要功能与工作原理1.3 常用解析器类型 二 主要输出解析器类型2.1 Pydantic/Json输出解析器2.2 结构化输出解析器2.3 列表解析器2.4 日期解析器2.5 Json输出解析器2.6 xml输出解析器 三 高级使用技巧3…...
react菜单,动态绑定点击事件,菜单分离出去单独的js文件,Ant框架
1、菜单文件treeTop.js // 顶部菜单 import { AppstoreOutlined, SettingOutlined } from ant-design/icons; // 定义菜单项数据 const treeTop [{label: Docker管理,key: 1,icon: <AppstoreOutlined />,url:"/docker/index"},{label: 权限管理,key: 2,icon:…...
