【Python实战因果推断】23_倾向分3
目录
Propensity Score Matching
Inverse Propensity Weighting
Propensity Score Matching
另一种控制倾向得分的常用方法是匹配估计法。这种方法搜索具有相似可观测特征的单位对,并比较接受干预与未接受干预的单位的结果。如果您有数据科学背景,您可以将匹配视为一种简单的 K 最近邻(KNN)算法,其中 K=1 。首先,使用倾向得分作为唯一特征,在接受治疗的单位上拟合一个 KNN 模型,并用它来推算对照组的 Y1。然后,在未治疗单位上拟合一个 KNN 模型,用它来推算治疗单位的 Y0。在这两种情况下,推算值都只是匹配单位的结果,而匹配是基于倾向得分的:
from sklearn.neighbors import KNeighborsRegressorT = "intervention"X = "propensity_score"Y = "engagement_score"treated = data_ps.query(f"{T}==1")untreated = data_ps.query(f"{T}==0")mt0 = KNeighborsRegressor(n_neighbors=1).fit(untreated[[X]],untreated[Y])mt1 = KNeighborsRegressor(n_neighbors=1).fit(treated[[X]], treated[Y])predicted = pd.concat([# find matches for the treated looking at the untreated knn modeltreated.assign(match=mt0.predict(treated[[X]])),# find matches for the untreated looking at the treated knn modeluntreated.assign(match=mt1.predict(untreated[[X]]))])predicted.head()

一旦你有了一个匹配的每个单位,你可以估计的ATE:
其中是治疗组不同于i的单位i的匹配值:
np.mean((predicted[Y] - predicted["match"])*predicted[T]+ (predicted["match"] - predicted[Y])*(1-predicted[T]))0.28777443474045966
老实说,我不是这个估计器的忠实粉丝,第一,因为它有偏差;第二,因为它的方差很难推导;第三,因为我在数据科学方面的经验让我对 KNN 产生了怀疑,主要是因为它在处理高维 X 时效率很低。我在这里教授这种方法,主要是因为它非常有名,你可能会在这里或那里看到它。
Inverse Propensity Weighting
还有一种被广泛使用的倾向得分利用方法,我认为它更可取--反倾向加权法(IPW)。这种方法根据干预的反概率对数据重新加权,可以使干预在重新加权的数据中看起来像是随机分配的。为此,我们通过 对样本进行重新加权,以创建一个伪人群,近似于如果每个人都接受了 t 治疗会发生的情况:
再说一遍,证明这一点并不复杂,但这不是重点。因此,让我们坚持直觉。假设你想知道 Y1 的期望值,即如果所有经理都参加了培训,平均参与度会是多少。为了得到这个期望值,你需要将所有接受干预的经理人按照接受干预的反概率进行排序。这样,那些接受干预的概率很低,但还是接受了培训的人的权重就会很高。从本质上讲,你是在提高罕见干预案例的权重。
这很有道理,对吗?如果一个接受干预的个体接受治疗的概率很低,那么这个个体看起来就很像未接受干预的个体。这一定很有趣!如果未接受治疗的个体接受了治疗,,那么这个看起来像未接受治疗的个体很可能对未接受治疗的个体会发生的情况有很大的参考价值。对照组也是如此。如果对照组看起来很像治疗组,那么它很可能是
的良好估计值,所以你要给它更大的权重。
以下是管理培训数据的处理过程,权重表示为每个点的大小:
请注意,当 较低时,接受过培训的经理人(T = 1)的权重较高。你给予了那些看起来像未接受过培训的经理人很高的权重。相反,当
较高或
较低时,未接受培训的经理人的权重较高。在这种情况下,您就会高度重视与已治疗者相似的未治疗者。
如果您可以使用倾向得分来恢复平均潜在结果,这也意味着您可以使用倾向得分来恢复 ATE:
这两种期望都可以用非常简单的代码从数据中估计出来:
weight_t = 1/data_ps.query("intervention==1")["propensity_score"]weight_nt = 1/(1-data_ps.query("intervention==0")["propensity_score"])t1 = data_ps.query("intervention==1")["engagement_score"]t0 = data_ps.query("intervention==0")["engagement_score"]y1 = sum(t1*weight_t)/len(data_ps)y0 = sum(t0*weight_nt)/len(data_ps)print("E[Y1]:", y1)print("E[Y0]:", y0)print("ATE", y1 - y0)E[Y1]: 0.11656317232946772E[Y0]: -0.1494155364781444ATE 0.2659787088076121
此外,这个结果看起来与使用 OLS 得到的结果非常相似,这可以很好地检查您是否做错了什么。还值得注意的是,ATE 表达式可以简化如下:
果然,它产生的结果与以前完全相同:
np.mean(data_ps["engagement_score"]* (data_ps["intervention"] - data_ps["propensity_score"])/ (data_ps["propensity_score"]*(1-data_ps["propensity_score"])))0.26597870880761226
相关文章:
【Python实战因果推断】23_倾向分3
目录 Propensity Score Matching Inverse Propensity Weighting Propensity Score Matching 另一种控制倾向得分的常用方法是匹配估计法。这种方法搜索具有相似可观测特征的单位对,并比较接受干预与未接受干预的单位的结果。如果您有数据科学背景,您可…...
Qt源码解析之QObject
省去大部分virtual和public方法后,Qobject主要剩下以下成员: //qobject.h class Q_CORE_EXPORT Qobject{Q_OBJECTQ_PROPERTY(QString objectName READ objectName WRITE setObjectName NOTIFY objectNameChanged)Q_DECLARE_PRIVATE(QObject) public:Q_I…...
【算法专题】模拟算法题
模拟算法题往往不涉及复杂的数据结构或算法,而是侧重于对特定情景的代码实现,关键在于理解题目所描述的情境,并能够将其转化为代码逻辑。所以我们在处理这种类型的题目时,最好要现在演草纸上把情况理清楚,再动手编写代…...
分库分表真的适合你的系统吗?
曾几何时,“并发高就分库,数据大就分表”已经成了处理 MySQL 数据增长问题的圣经。 面试官喜欢问,博主喜欢写,候选人也喜欢背,似乎已经形成了一个闭环。 但你有没有思考过,分库分表真的适合你的系统吗&am…...
9 redis,memcached,nginx网络组件
课程目标: 1.网络模块要处理哪些事情 2.reactor是怎么处理这些事情的 3.reactor怎么封装 4.网络模块与业务逻辑的关系 5.怎么优化reactor? io函数 函数调用 都有两个作用:io检测 是否就绪 io操作 1. int clientfd = accept(listenfd, &addr, &len); 检测 全连接队列…...
【MySQL】事务四大特性以及实现原理
事务四大特性 原子性(Atomicity) 事务中的所有操作要么全部完成,要么全部不执行。如果事务中的任何一步失败,整个事务都会被回滚,以保持数据的完整性。 一致性(Consistency) 事务应确保数据库…...
【控制Android.bp的编译】
1.首先Android.bp的语法是不支持if 条件语句的 2.查到可以用enabled来控制Android.bp中的模块是否参与编译,但是并不能实现动态的控制,比如你需要根据获取到的安卓版本来控制一个Android.bp是否编译,是无法做到的。enabled只能是固定的true或…...
【车载开发系列】J-Link/JFlash 简介与驱动安装方法
【车载开发系列】J-Link/JFlash 简介与驱动安装方法 【车载开发系列】J-Link/JFlash 简介与驱动安装方法 【车载开发系列】J-Link/JFlash 简介与驱动安装方法一. 软件介绍二. 下载安装包二. 开始安装三. 确认安装四. J-Flash的使用 一. 软件介绍 J-Link是SEGGER公司为支持仿真…...
207 课程表
题目 你这个学期必须选修 numCourses 门课程,记为 0 到 numCourses - 1 。 在选修某些课程之前需要一些先修课程。 先修课程按数组 prerequisites 给出,其中 prerequisites[i] [ai, bi] ,表示如果要学习课程 ai 则 必须 先学习课程 bi 。 …...
罗剑锋的C++实战笔记学习(一):const、智能指针、lambda表达式
1、const 1)、常量 const一般的用法就是修饰变量、引用、指针,修饰之后它们就变成了常量,需要注意的是const并未区分出编译期常量和运行期常量,并且const只保证了运行时不直接被修改 一般的情况,const放在左边&…...
宁德时代天行发布,商用车超充时代来临
近日,宁德时代正式推出商用动力电池品牌——“宁德时代天行”,同时发布“宁德时代天行轻型商用车(L)-超充版”和“宁德时代天行轻型商用车(L)-长续航版”两款产品,可实现4C超充能力和500km的实况…...
硅纪元应用评测 | 弱智吧大战GPT4o和Claude 3.5 Sonnet
"硅纪元AI应用测评"栏目,深入解析和评测最新的人工智能应用,提供专业见解和实用建议。不论您是AI专家还是科技爱好者,都能找到权威、详尽的测评,帮助您在快速发展的AI领域中做出最佳选择。一起探索AI的真实潜力…...
注意力机制 attention Transformer 笔记
动手学深度学习 这里写自定义目录标题 注意力加性注意力缩放点积注意力多头注意力自注意力Transformer 注意力 注意力汇聚的输出为值的加权和 查询的长度为q,键的长度为k,值的长度为v。 q ∈ 1 q , k ∈ 1 k , v ∈ R 1 v {\bf{q}} \in {^{1 \times…...
开始尝试从0写一个项目--后端(二)
实现学生管理 新增学生 接口设计 请求路径:/admin/student 请求方法:POST 请求参数:请求头:Headers:"Content-Type": "application/json" 请求体:Body: id 学生id …...
【图解大数据技术】Hive、HBase
【图解大数据技术】Hive、HBase Hive数据仓库Hive的执行流程Hive架构数据导入Hive HBaseHBase简介HBase架构HBase的列式存储HBase建表流程HBase数据写入流程HBase数据读取流程 Hive Hive是基于Hadoop的一个数据仓库工具,Hive的数据存储在HDFS上,底层基于…...
composables 目录下的文件(web前端)
composables 目录通常用于存放可组合的函数或逻辑,这些函数或逻辑可以在不同的组件中复用。具体来说,composables 目录下的文件通常包含以下内容: 组合式函数 (Composable Functions): 这些函数利用 Vue 3 的组合式 API࿰…...
使用Python绘制堆积柱形图
使用Python绘制堆积柱形图 堆积柱形图效果代码 堆积柱形图 堆积柱形图(Stacked Bar Chart)是一种数据可视化图表,用于显示不同类别的数值在某一变量上的累积情况。每一个柱状条显示多个子类别的数值,子类别的数值在柱状条上堆积在…...
DP:二维费用背包问题
文章目录 🎵二维费用背包问题🎶引言🎶问题定义🎶动态规划思想🎶状态定义和状态转移方程🎶初始条件和边界情况 🎵例题🎶1.一和零🎶2.盈利计划 🎵总结 …...
C语言标准库中的函数
由于C语言标准库中的函数非常多,我将按类别列出一些常见函数及其作用。请注意,这里不可能列出所有函数,但我会尽量覆盖主要的类别和函数。 ### 标准输入输出 - printf: 格式化输出到标准输出(通常是屏幕)。 - scanf: …...
Qt5.9.9 关于界面拖动导致QModbusRTU(QModbusTCP没有测试过)离线的问题
问题锁定 参考网友的思路: Qt5.9 Modbus request timeout 0x5异常解决 网友认为是Qt的bug, 我也认同;网友认为可以更新模块, 我也认同, 我也编译了Qt5.15.0的code并成功安装到Qt5.9.9中进行使用,界面拖…...
eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...
centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...
MVC 数据库
MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...
postgresql|数据库|只读用户的创建和删除(备忘)
CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...
srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
USB Over IP专用硬件的5个特点
USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中,从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备(如专用硬件设备),从而消除了直接物理连接的需要。USB over IP的…...
浪潮交换机配置track检测实现高速公路收费网络主备切换NQA
浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...
uniapp 字符包含的相关方法
在uniapp中,如果你想检查一个字符串是否包含另一个子字符串,你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的,但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...
(一)单例模式
一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...
