当前位置: 首页 > news >正文

使用块的网络 VGG

一、AlexNet与VGG

1、深度学习追求更深更大,使用VGG将卷积层组合为块

2、VGG块:3*3卷积(pad=1,n层,m通道)、2*2最大池化层

二、VGG架构

1、多个VGG块后接全连接层

2、不同次数的重复块得到不同的架构,eg:VGG-16(卷积层和全连接层相加的总数)

三、总结

1、VGG-11使用可复用的卷积块构造网络。不同的VGG模型可通过每个块中卷积层数量和输出通道数量的差异来定义。

2、块的使用导致网络定义的非常简洁。使用块可以有效地设计复杂的网络。

3、深层且窄的卷积(即3×3)比较浅层且宽的卷积更有效

四、代码

1、VGG块

import torch
from torch import nn
from d2l import torch as d2ldef vgg_block(num_convs, in_channels, out_channels):layers = []for _ in range(num_convs):layers.append(nn.Conv2d(in_channels, out_channels,kernel_size=3, padding=1))layers.append(nn.ReLU())in_channels = out_channelslayers.append(nn.MaxPool2d(kernel_size=2,stride=2))return nn.Sequential(*layers)

2、VGG网络

def vgg(conv_arch):conv_blks = []in_channels = 1# 卷积层部分# num_convs一块里有多少个层for (num_convs, out_channels) in conv_arch:conv_blks.append(vgg_block(num_convs, in_channels, out_channels))in_channels = out_channelsreturn nn.Sequential(*conv_blks, nn.Flatten(),# 全连接层部分nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),nn.Linear(4096, 10))net = vgg(conv_arch)

相关文章:

使用块的网络 VGG

一、AlexNet与VGG 1、深度学习追求更深更大,使用VGG将卷积层组合为块 2、VGG块:3*3卷积(pad1,n层,m通道)、2*2最大池化层 二、VGG架构 1、多个VGG块后接全连接层 2、不同次数的重复块得到不同的架构&a…...

微信小程序性能与体验优化

1. 合理的设置可点击元素的响应区域大小; 比较常见的是页面的点击按钮太小,用户点击不到按钮,这样用户体验很不好。 2. 避免渲染页面耗时过长; 当页面渲染时间过长的话,会让用户感觉非常卡顿,当出现这种…...

Android14之获取包名/类名/服务名(二百二十三)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒…...

FreeU: Free Lunch in Diffusion U-Net——【代码复现】

这篇文章发表于CVPR 2024,官网地址:ChenyangSi/FreeU: FreeU: Free Lunch in Diffusion U-Net (CVPR2024 Oral) (github.com) 一、环境准备 提前准备好python、pytorch环境 二、下载项目依赖 demo下有一个requirements.txt文件, pip inst…...

第三方商城对接重构(HF202407)

文章目录 项目背景一、模块范围二、问题方案1. 商品模块整体来说这块对接的不是太顺利,梳理了几条大概的思路: 2. 订单模块3. 售后4. 发票5. 结算单 经验总结 项目背景 作为供应商入围第三方商城成功,然后运营了一段时间,第三方通…...

如何在Windows 11上复制文件和文件夹路径?这里提供几种方法

在Windows 11上复制文件或文件夹的路径就像在右键单击菜单中选择一个选项或按键盘快捷键一样简单。我们将向你展示如何在电脑上以各种方式进行操作。 从右键单击菜单 复制文件或文件夹路径的最简单方法是在该项目的右键单击菜单中选择一个选项。你也可以使用此方法复制多个项…...

大数据Spark 面经

1: Spark 整体架构 Spark 是新一代的大数据处理引擎,支持批处理和流处理,也还支持各种机器学习和图计算,它就是一个Master-worker 架构,所以整个的架构就如下所示: 2: Spark 任务提交命令 一般我们使用shell 命令提…...

绝区叁--如何在移动设备上本地运行LLM

随着大型语言模型 (LLM)(例如Llama 2和Llama 3)不断突破人工智能的界限,它们正在改变我们与周围技术的互动方式。这些模型早已集成到我们的手机中,但到目前为止,它们理解和处理请求的能力还非常有限。然而,…...

Interview preparation--Https 工作流程

HTTP 传输的弊端 如上图,Http进行数据传输的时候是明文传输,导致任何人都有可能截获信息,篡改信息如果此时黑客冒充服务器,或者黑客窃取信息,则其可以返回任意信息给客户端,而且不被客户端察觉,…...

集成学习(三)GBDT 梯度提升树

前面学习了:集成学习(二)Boosting-CSDN博客 梯度提升树:GBDT-Gradient Boosting Decision Tree 一、介绍 作为当代众多经典算法的基础,GBDT的求解过程可谓十分精妙,它不仅开创性地舍弃了使用原始标签进行…...

后端工作之一:CrapApi —— API接口管理系统部署

一个API接口的网络请求都有这些基本元素构成: API接口大多数是由后端编写,前端开发人员进行请求调用 就是一个网络请求的流程。 API(Application Programming Interface)接口是现代软件开发中不可或缺的一部分。它们提供了一种…...

20240706 xenomai系统中网口(m2/minipcie I210网卡)的实时驱动更换

lspci 查看网口 查看网口驱动 1 ubuntu 查看网口驱动 在Ubuntu中,您可以使用lshw命令来查看网络接口的驱动信息。如果lshw没有安装,您可以通过执行以下命令来安装它: sudo apt-get update sudo apt-get install lshw 安装完成后&#xff…...

模型训练之数据集

我们知道人工智能的四大要素:数据、算法、算力、场景。我们训练模型离不开数据 目标 一、数据集划分 定义 数据集:训练集是一组训练数据。 样本:一组数据中一个数据 特征:反映样本在某方面的表现、属性或性质事项 训练集&#…...

【TB作品】数码管独立按键密码锁,ATMEGA16单片机,Proteus仿真 atmega16数码管独立按键密码锁

文章目录 基于ATmega16的数码管独立按键密码锁设计实验报告实验背景硬件介绍主要元器件电路连接 设计原理硬件设计软件设计 程序原理延时函数独立按键检测密码显示主函数 资源代码 基于ATmega16的数码管独立按键密码锁设计实验报告 实验背景 本实验旨在设计并实现一个基于ATm…...

数据库主从复制

目录 一.主从复制架构 二.主从复制原理 三.实现主从复制配置 1.新建主从复制 2.实战遇到问题 3.复制错误解决方法 4.级联 主从复制 5.半同步复制 MySQL数据库的主从复制(Master-Slave Replication)是一种常见的数据库复制架构,用于提…...

昇思25天学习打卡营第13天|BERT

一、简介: BERT全称是来自变换器的双向编码器表征量(Bidirectional Encoder Representations from Transformers),它是Google于2018年末开发并发布的一种新型语言模型。与BERT模型相似的预训练语言模型例如问答、命名实体识别、自…...

跨平台书签管理器 - Raindrop

传统的浏览器书签功能虽然方便,但在管理和分类上存在诸多局限。今天,我要向大家推荐一款功能强大的跨平台书签管理-Raindrop https://raindrop.io/ 📢 主要功能: 智能分类和标签管理 强大的搜索功能 跨平台支持 分享与协作 卡片式…...

均匀采样信号的鲁棒Savistky-Golay滤波(MATLAB)

S-G滤波器又称S-G卷积平滑器,它是一种特殊的低通滤波器,用来平滑噪声数据。该滤波器被广泛地运用于信号去噪,采用在时域内基于多项式最小二乘法及窗口移动实现最佳拟合的方法。与通常的滤波器要经过时域-频域-时域变换…...

c++ 可以再头文件种直接给成员变量赋值吗

在C中,你通常不能在头文件中直接给类的成员变量赋值,因为这会导致每个包含该头文件的源文件中都尝试进行赋值,从而引发多重定义错误。然而,你可以在类的构造函数中初始化成员变量,或者在类声明中使用初始化列表或默认成…...

47.HOOK引擎优化支持CALL与JMP位置做HOOK

免责声明:内容仅供学习参考,请合法利用知识,禁止进行违法犯罪活动! 上一个内容:46.修复HOOK对代码造成的破坏 以 46.修复HOOK对代码造成的破坏 它的代码为基础进行修改 优化的是让引擎支持从短跳JMP(E9&…...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

19c补丁后oracle属主变化,导致不能识别磁盘组

补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...

python/java环境配置

环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题&#xff0c;前来答题。 每个人对刷题理解是不同&#xff0c;有的人是看了writeup就等于刷了&#xff0c;有的人是收藏了writeup就等于刷了&#xff0c;有的人是跟着writeup做了一遍就等于刷了&#xff0c;还有的人是独立思考做了一遍就等于刷了。…...

AI书签管理工具开发全记录(十九):嵌入资源处理

1.前言 &#x1f4dd; 在上一篇文章中&#xff0c;我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源&#xff0c;方便后续将资源打包到一个可执行文件中。 2.embed介绍 &#x1f3af; Go 1.16 引入了革命性的 embed 包&#xff0c;彻底改变了静态资源管理的…...

在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?

uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件&#xff0c;用于在原生应用中加载 HTML 页面&#xff1a; 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...