代码随想录| 编辑距离
判断子序列[https://leetcode.cn/problems/is-subsequence/description/]
题意:给定字符串 s 和 t ,判断 s 是否为 t 的子序列。
思路:从动态规划, dp[i][j] 表示s的前i-1个元素和t的前j-1个元素相同的子序列元素的个数。
还要对dp初始化。dp[i][0] 表示在t空串的情况下,s的前i-1个字符串的相等的情况。 都设为0 ; dp[0][j] 表示在s为空串的情况下与s的前j-1个字符串相等的情况。
状态转移:
if(s[i-1] == t[j-1])
dp[i][j] = dp[i-1][j-1] +1 ; // 表示 个数加1 。
else
dp[i][j] = dp[i][j-1] ; // 表示现在的状态是s的前一个元素的状态。
不同子序列
题意:两个字符串s, t 统计并返回在 s 的 子序列 中 t 出现的个数,结果需要对 109 + 7 取模。
思路:dp[i][j] 表示在s的前i-1个字符的情况下,t的前j-1个字符出现的次数。
dp初始化:dp[i][0] 表示s的前i-1个字符,t空串出现的次数为1 。
dp[0][j]= 0 表示s为空串的情况 , t串出现的次数为0 。
因为有这样的例子: s:bagg 和 t:bag ,s[3] 和 t[2]是相同的,但是字符串s也可以不用s[3]来匹配,即用s[0]s[1]s[2]组成的bag。
dp[i][j] = dp[i-1][j-1] + dp[i-1][j] ; // 由s的上一个字符来达到。
动态转移:
if(s[i-1] == t[j-1])
// 分别由上一个迭代的dp[i][j] 的个数和dp[i-1][j]表示删除掉s的当前遍历元素的个数组成。
dp[i][j] = dp[i-1][j-1] + dp[i-1][j] ;
else
dp[i][j] = dp[i-1][j] ;
代码
class Solution {
public:int numDistinct(string s, string t) {const int N = 1e3+10 ;// 可以映射为删除s的元素的方式使得s最后与t相等的个数vector<vector<uint64_t >> dp(s.size()+10 , vector<uint64_t>(t.size() + 10 , 0)) ; // dp[i][j] 表示在s的前i-1的子串(子序列)出现t的前j-1个子串的个数。 for(int i = 0 ; i < s.size() ;++ i){dp[i][0] = 1; // 表示s的前i-1个子串,如何删除达到空字符串。 }// dpfor(int j = 1 ; j < t.size() ; ++ j ){dp[0][j] = 0 ; // 表示空字符串无论如何删除都达到不了j的状态。 }for(int i=1 ; i<= s.size() ; ++ i)for(int j = 1 ; j <= t.size() ;++ j){if(s[i-1] == t[j-1]){dp[i][j] = dp[i-1][j-1] +dp[i-1][j] ; // 分别由上一个迭代的dp[i][j] 的个数和dp[i-1][j]表示删除掉s的当前遍历元素的个数组成。 }else{dp[i][j] = dp[i-1][j] ; }}for(int j = 0 ; j <= 3 ; ++ j){for(int i = 0 ; i <= 7 ; ++i){cout<<dp[i][j]<<" " ; }cout<<endl ; }return dp[s.size()][t.size()] ; }
};
两个字符串的删除操作
题意:给定两个单词 word1 和 word2,找到使得 word1 和 word2 相同所需的最小步数,每步可以删除任意一个字符串中的一个字符。
思路:dp[i][j] 表示word1在i-1和word2在j-1之前相同的最小步数。
动态转移:
当word1[i-1] == word2[j-1]
dp[i][j] = dp[i-1][j-1] ;
当word1[i-1] != word2[j-1]
dp[i][j] = min (dp[i-1][j] +1 , dp[i][j-1]+1 , dp[i-1][j-1] +2 ) ; // 包括删除word1这个i元素, 等于dp[i-1][j] 的状态 +1 加一表示加上删除操作。 dp[i][j-1] +1 ; 和表示dp[i-1][j] +1 和两个字符串 都要删除自己末尾的元素。
代码
class Solution {
public:int minDistance(string word1, string word2) {vector<vector<uint64_t>> dp(word1.size()+10, vector<uint64_t>(word2.size()+10 , 0 )) ; // dp[i][j] 表示使word1的前i-1字符和word2的前j-1个字符的最小步数。 for(int i = 0 ; i <= word1.size() ; ++ i){dp[i][0] = i ; // 步数是i+1 删除i个字符串。 可以达到word2为空的状态。 }for(int j = 0 ; j <= word2.size() ; ++ j){dp[0][j] = j ; // 步数是j+1 ; 删除j个字符串, 可以达到word1为空的状态}for(int i = 1 ; i <= word1.size() ; ++ i)for(int j = 1 ; j <= word2.size() ; ++ j){if(word1[i-1] == word2[j-1]){dp[i][j] = dp[i-1][j-1] ; }else{dp[i][j] = min (dp[i-1][j] +1 ,min( dp[i][j-1] +1 , dp[i-1][j-1] +2 ) ) ; // 是要在dp[i-1 ] [j] 的状态下加1 。 和dp[i][j-1] 的状态下加1 或者 dp[i-1][j-1]的状态下加2中选一个最小的。 }}return dp[word1.size()][word2.size()] ; }
};
以上几个题是为最短编辑距离服务的
最短编辑距离:
给定两个单词word1和word2 。请返回将 word1 转换成 word2 所使用的最少操作数 。
- word2添加一个元素,相当于word1删除一个元素,例如 word1 = “ad” ,word2 = “a”,word2添加一个元素d,也就是相当于word1删除一个元素d,操作数大小一样!
思路:
dp[i][j] 表示在word1在i-1之前和 word2在j-1之前的最少操作次数。
如果word1[i-1] == word2[j-1] ; 那么
dp[i][j] =dp[i-1][j-1] ;
否则
dp[i][j] = min(dp[i-1][j] +1, dp[i][j-1] +1 , dp[i-1][j-1] +1 ) ; ; // dp[i-1][j-1] +1 表示修改 。
return dp[word1.size() ][word2.size()] ;
相关文章:
代码随想录| 编辑距离
判断子序列[https://leetcode.cn/problems/is-subsequence/description/] 题意:给定字符串 s 和 t ,判断 s 是否为 t 的子序列。 思路:从动态规划, dp[i][j] 表示s的前i-1个元素和t的前j-1个元素相同的子序列元素的个数。 还要对d…...
MOJO编程语言的编译与执行:深入编译器与解释器的工作原理
引言 MOJO编程语言以其面向对象的特性和简洁的语法而受到开发者的欢迎。在MOJO的世界中,编译器和解释器是两个核心组件,它们负责将MOJO代码转换为机器可执行的指令。本文将探讨MOJO编译器和解释器的工作原理,以及它们如何在MOJO编程过程中发…...
nginx-限制客户端并发数
文章目录 前言一、ngx_http_limit_conn_module二、指令介绍1. limit_conn_zone2.limit_conn3. limit_conn_log_level4. limit_conn_status 案例未限制限制 总结 前言 瞬时大量用户访问服务器,导致服务器超载而宕机。 恶意请求攻击服务器,导致服务器超载…...

Vatee万腾平台:智能生活的新选择
在科技飞速发展的今天,智能生活已经不再是遥不可及的梦想,而是逐渐渗透到我们日常生活的方方面面。Vatee万腾平台,作为智能科技领域的佼佼者,正以其创新的技术、丰富的应用场景和卓越的用户体验,成为智能生活的新选择&…...

白嫖A100-interLM大模型部署试用活动,亲测有效-2.Git
申明 以下部分内容来源于活动教学文档: Docs git 安装 是一个开源的分布式版本控制系统,被广泛用于软件协同开发。程序员的必备基础工具。 常用的 Git 操作 git init 初始化一个新的 Git 仓库,在当前目录创建一个 .git 隐藏文件夹来跟踪…...

LeetCode 60.排序排列(dfs暴力)
给出集合 [1,2,3,...,n],其所有元素共有 n! 种排列。 按大小顺序列出所有排列情况,并一一标记,当 n 3 时, 所有排列如下: "123""132""213""231""312""321" 给定…...
矩阵分析与应用1-矩阵代数基础
矩阵分析与应用1-矩阵代数基础 1 矩阵的基本运算2 矩阵的初等变换3 向量空间、线性映射与Hilbert空间4 内积与范数5 随机向量6 矩阵的性能指标7 逆矩阵与伪逆矩阵8 Moore-Penrose逆矩阵9 矩阵的直和与Hadamard积10 Kronecker积与Khatri-Rao积11 向量化与矩阵化12 稀疏表示与压缩…...
Vue的学习之生命周期
一、生命周期 <!DOCTYPE html> <html><head><meta charset"utf-8"><title>Vue的学习</title><script src"vue.js" type"text/javascript" charset"utf-8"></script></head>&l…...

【MySQL】表的操作{创建/查看/修改/删除}
文章目录 1.创建表1.1comment:注释信息1.2存储引擎 2.查看表3.修改表3.1add添加列,对原数据无影响3.2drop删除列3.3modify修改列类型3.4change修改列名3.5rename [to]修改表名 4.删除表5.总结 1.创建表 CREATE TABLE table_name (field1 datatype,field…...

基于Python爬虫的城市二手房数据分析可视化
基于Python爬虫的城市二手房数据分析可视化 一、前言二、数据采集(爬虫,附完整代码)三、数据可视化(附完整代码)3.1 房源面积-总价散点图3.2 各行政区均价3.3 均价最高的10个小区3.4 均价最高的10个地段3.5 户型分布3.6 词云图四、如何更换城市一、前言 二手房具有价格普…...

这款新的 AI 语音助手击败了 OpenAI,成为 ChatGPT 最受期待的功能之一
OpenAI 推迟了 ChatGPT 令人印象深刻的语音模式,这让许多 AI 聊天机器人的粉丝感到不安,但他们现在可能已经被挖走了。法国人工智能开发商 Kyutai 推出了一款名为 Moshi 的实时语音 AI 助手。 Moshi 旨在通过语音(如 Alexa 或 Google Assista…...

CTS单测某个模块和测试项
1 ,测试单个模块命令 run cts -m <模块名> 比如:run cts -m CtsUsbTests模块名可以从测试报告中看,如下: 2, 测试单个测试项 run cts -m <模块名> -t <test_name> 比如:run cts -m ru…...

pytorch、pytorch_lightning、torchmetrics版本对应
目录 1.pytorch_lightning对应版本安装 2.PyTorch Lightning介绍 PyTorch Lightning 的作用: PyTorch Lightning 的基本用法: 报错:ModuleNotFoundError: No module named pytorch_lightning 这种报错一看就是缺了pytorch_lightning包&am…...
麒麟系统部署JeecgBoot
一、安装jdk 自带的即可,不必另外安装 二、安装MySQL 麒麟系统安装MySQL_麒麟系统安装万里数据库步骤-CSDN博客 三、安装Redis 麒麟系统安装Redis_麒麟上redis-CSDN博客 四、安装Nginx 1、下载 下载地址:https://redis.io/ 2、解压配置 tar .…...

要想贵人相助,首先自己得先成为贵人!
点击上方△腾阳 关注 转载请联系授权 在金庸江湖里,有两位大侠,一个是萧峰,一个是郭靖。 郭靖在《射雕英雄传》里是绝对的主角,在《神雕侠侣》当中也是重要的配角,甚至可以说是第二主角。 谈起郭靖,很多…...

使用块的网络 VGG
一、AlexNet与VGG 1、深度学习追求更深更大,使用VGG将卷积层组合为块 2、VGG块:3*3卷积(pad1,n层,m通道)、2*2最大池化层 二、VGG架构 1、多个VGG块后接全连接层 2、不同次数的重复块得到不同的架构&a…...
微信小程序性能与体验优化
1. 合理的设置可点击元素的响应区域大小; 比较常见的是页面的点击按钮太小,用户点击不到按钮,这样用户体验很不好。 2. 避免渲染页面耗时过长; 当页面渲染时间过长的话,会让用户感觉非常卡顿,当出现这种…...

Android14之获取包名/类名/服务名(二百二十三)
简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒…...

FreeU: Free Lunch in Diffusion U-Net——【代码复现】
这篇文章发表于CVPR 2024,官网地址:ChenyangSi/FreeU: FreeU: Free Lunch in Diffusion U-Net (CVPR2024 Oral) (github.com) 一、环境准备 提前准备好python、pytorch环境 二、下载项目依赖 demo下有一个requirements.txt文件, pip inst…...

第三方商城对接重构(HF202407)
文章目录 项目背景一、模块范围二、问题方案1. 商品模块整体来说这块对接的不是太顺利,梳理了几条大概的思路: 2. 订单模块3. 售后4. 发票5. 结算单 经验总结 项目背景 作为供应商入围第三方商城成功,然后运营了一段时间,第三方通…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...

Ascend NPU上适配Step-Audio模型
1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...

SpringTask-03.入门案例
一.入门案例 启动类: package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合
在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...

嵌入式学习笔记DAY33(网络编程——TCP)
一、网络架构 C/S (client/server 客户端/服务器):由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序,负责提供用户界面和交互逻辑 ,接收用户输入,向服务器发送请求,并展示服务…...

springboot整合VUE之在线教育管理系统简介
可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生,小白用户,想学习知识的 有点基础,想要通过项…...
Java编程之桥接模式
定义 桥接模式(Bridge Pattern)属于结构型设计模式,它的核心意图是将抽象部分与实现部分分离,使它们可以独立地变化。这种模式通过组合关系来替代继承关系,从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...

stm32wle5 lpuart DMA数据不接收
配置波特率9600时,需要使用外部低速晶振...

AD学习(3)
1 PCB封装元素组成及简单的PCB封装创建 封装的组成部分: (1)PCB焊盘:表层的铜 ,top层的铜 (2)管脚序号:用来关联原理图中的管脚的序号,原理图的序号需要和PCB封装一一…...