基于Python爬虫的城市二手房数据分析可视化
基于Python爬虫的城市二手房数据分析可视化
- 一、前言
- 二、数据采集(爬虫,附完整代码)
- 三、数据可视化(附完整代码)
- 3.1 房源面积-总价散点图
- 3.2 各行政区均价
- 3.3 均价最高的10个小区
- 3.4 均价最高的10个地段
- 3.5 户型分布
- 3.6 词云图
- 四、如何更换城市
一、前言
二手房具有价格普遍偏低、地理位置较好的优势。然而,随着城市化进程加快,二手房交易市场鱼龙混杂,如何找到合适的房源信息已成为难题。随着互联网技术的发展,人们开始通过交易网站来了解二手房信息,网络上存在大量的房源,使用Python爬虫技术从中爬取有用的数据,再进行统计和可视化分析,可以把冗杂的信息变得精简。本文旨在使用这种技术,分析上海市的二手房源数量和平均房价,从户型、面积等多个角度分析二手房市场现状,以方便购房者决策,也为政府干预房地产业提供参考。先来看一下数据的情况以及可视化图表。





相关文章:
基于Python爬虫的城市二手房数据分析可视化
基于Python爬虫的城市二手房数据分析可视化 一、前言二、数据采集(爬虫,附完整代码)三、数据可视化(附完整代码)3.1 房源面积-总价散点图3.2 各行政区均价3.3 均价最高的10个小区3.4 均价最高的10个地段3.5 户型分布3.6 词云图四、如何更换城市一、前言 二手房具有价格普…...
这款新的 AI 语音助手击败了 OpenAI,成为 ChatGPT 最受期待的功能之一
OpenAI 推迟了 ChatGPT 令人印象深刻的语音模式,这让许多 AI 聊天机器人的粉丝感到不安,但他们现在可能已经被挖走了。法国人工智能开发商 Kyutai 推出了一款名为 Moshi 的实时语音 AI 助手。 Moshi 旨在通过语音(如 Alexa 或 Google Assista…...
CTS单测某个模块和测试项
1 ,测试单个模块命令 run cts -m <模块名> 比如:run cts -m CtsUsbTests模块名可以从测试报告中看,如下: 2, 测试单个测试项 run cts -m <模块名> -t <test_name> 比如:run cts -m ru…...
pytorch、pytorch_lightning、torchmetrics版本对应
目录 1.pytorch_lightning对应版本安装 2.PyTorch Lightning介绍 PyTorch Lightning 的作用: PyTorch Lightning 的基本用法: 报错:ModuleNotFoundError: No module named pytorch_lightning 这种报错一看就是缺了pytorch_lightning包&am…...
麒麟系统部署JeecgBoot
一、安装jdk 自带的即可,不必另外安装 二、安装MySQL 麒麟系统安装MySQL_麒麟系统安装万里数据库步骤-CSDN博客 三、安装Redis 麒麟系统安装Redis_麒麟上redis-CSDN博客 四、安装Nginx 1、下载 下载地址:https://redis.io/ 2、解压配置 tar .…...
要想贵人相助,首先自己得先成为贵人!
点击上方△腾阳 关注 转载请联系授权 在金庸江湖里,有两位大侠,一个是萧峰,一个是郭靖。 郭靖在《射雕英雄传》里是绝对的主角,在《神雕侠侣》当中也是重要的配角,甚至可以说是第二主角。 谈起郭靖,很多…...
使用块的网络 VGG
一、AlexNet与VGG 1、深度学习追求更深更大,使用VGG将卷积层组合为块 2、VGG块:3*3卷积(pad1,n层,m通道)、2*2最大池化层 二、VGG架构 1、多个VGG块后接全连接层 2、不同次数的重复块得到不同的架构&a…...
微信小程序性能与体验优化
1. 合理的设置可点击元素的响应区域大小; 比较常见的是页面的点击按钮太小,用户点击不到按钮,这样用户体验很不好。 2. 避免渲染页面耗时过长; 当页面渲染时间过长的话,会让用户感觉非常卡顿,当出现这种…...
Android14之获取包名/类名/服务名(二百二十三)
简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒…...
FreeU: Free Lunch in Diffusion U-Net——【代码复现】
这篇文章发表于CVPR 2024,官网地址:ChenyangSi/FreeU: FreeU: Free Lunch in Diffusion U-Net (CVPR2024 Oral) (github.com) 一、环境准备 提前准备好python、pytorch环境 二、下载项目依赖 demo下有一个requirements.txt文件, pip inst…...
第三方商城对接重构(HF202407)
文章目录 项目背景一、模块范围二、问题方案1. 商品模块整体来说这块对接的不是太顺利,梳理了几条大概的思路: 2. 订单模块3. 售后4. 发票5. 结算单 经验总结 项目背景 作为供应商入围第三方商城成功,然后运营了一段时间,第三方通…...
如何在Windows 11上复制文件和文件夹路径?这里提供几种方法
在Windows 11上复制文件或文件夹的路径就像在右键单击菜单中选择一个选项或按键盘快捷键一样简单。我们将向你展示如何在电脑上以各种方式进行操作。 从右键单击菜单 复制文件或文件夹路径的最简单方法是在该项目的右键单击菜单中选择一个选项。你也可以使用此方法复制多个项…...
大数据Spark 面经
1: Spark 整体架构 Spark 是新一代的大数据处理引擎,支持批处理和流处理,也还支持各种机器学习和图计算,它就是一个Master-worker 架构,所以整个的架构就如下所示: 2: Spark 任务提交命令 一般我们使用shell 命令提…...
绝区叁--如何在移动设备上本地运行LLM
随着大型语言模型 (LLM)(例如Llama 2和Llama 3)不断突破人工智能的界限,它们正在改变我们与周围技术的互动方式。这些模型早已集成到我们的手机中,但到目前为止,它们理解和处理请求的能力还非常有限。然而,…...
Interview preparation--Https 工作流程
HTTP 传输的弊端 如上图,Http进行数据传输的时候是明文传输,导致任何人都有可能截获信息,篡改信息如果此时黑客冒充服务器,或者黑客窃取信息,则其可以返回任意信息给客户端,而且不被客户端察觉,…...
集成学习(三)GBDT 梯度提升树
前面学习了:集成学习(二)Boosting-CSDN博客 梯度提升树:GBDT-Gradient Boosting Decision Tree 一、介绍 作为当代众多经典算法的基础,GBDT的求解过程可谓十分精妙,它不仅开创性地舍弃了使用原始标签进行…...
后端工作之一:CrapApi —— API接口管理系统部署
一个API接口的网络请求都有这些基本元素构成: API接口大多数是由后端编写,前端开发人员进行请求调用 就是一个网络请求的流程。 API(Application Programming Interface)接口是现代软件开发中不可或缺的一部分。它们提供了一种…...
20240706 xenomai系统中网口(m2/minipcie I210网卡)的实时驱动更换
lspci 查看网口 查看网口驱动 1 ubuntu 查看网口驱动 在Ubuntu中,您可以使用lshw命令来查看网络接口的驱动信息。如果lshw没有安装,您可以通过执行以下命令来安装它: sudo apt-get update sudo apt-get install lshw 安装完成后ÿ…...
模型训练之数据集
我们知道人工智能的四大要素:数据、算法、算力、场景。我们训练模型离不开数据 目标 一、数据集划分 定义 数据集:训练集是一组训练数据。 样本:一组数据中一个数据 特征:反映样本在某方面的表现、属性或性质事项 训练集&#…...
【TB作品】数码管独立按键密码锁,ATMEGA16单片机,Proteus仿真 atmega16数码管独立按键密码锁
文章目录 基于ATmega16的数码管独立按键密码锁设计实验报告实验背景硬件介绍主要元器件电路连接 设计原理硬件设计软件设计 程序原理延时函数独立按键检测密码显示主函数 资源代码 基于ATmega16的数码管独立按键密码锁设计实验报告 实验背景 本实验旨在设计并实现一个基于ATm…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...
C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...
【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...
零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...
Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...
RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...
【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...
