ChatGPT-4o大语言模型优化、本地私有化部署、从0-1搭建、智能体构建等高级进阶
目录
第一章 ChatGPT-4o使用进阶
第二章 大语言模型原理详解
第三章 大语言模型优化
第四章 开源大语言模型及本地部署
第五章 从0到1搭建第一个大语言模型
第六章 智能体(Agent)构建
第七章 大语言模型发展趋势
第八章 总结与答疑讨论
更多应用
在过去几年中,人工智能领域的发展迅猛,尤其是大语言模型的应用,为各行各业带来了前所未有的创新与突破。从ChatGPT-3.5的推出到GPT Store的上线,再到最新的多模态交互ChatGPT-4o,OpenAI不断引领科技潮流,推动AI生态系统的构建。
帮助学员深入理解和掌握大语言模型的前言技术,涵盖了提示词优化、GPTs逆向工程、大语言模型原理、大语言模型优化、开源模型本地私有化部署、从零构建大语言模型、智能体构建以及大语言模型的发展趋势。通过系统化的学习,学员将不仅掌握理论知识,还能在实际操作中获得宝贵经验。
采用“理论讲解+案例实战+动手实操+讨论互动”的教学方式,帮助学员在实践中巩固知识,提升技能。学员将学习如何优化提示词,掌握GPTs逆向工程技术,了解并应用Transformer、BERT、GPT等模型的工作原理,精通检索增强生成、微调和量化技术,掌握开源大语言模型的下载与使用,学习数据集构建、模型训练与部署,以及智能体构建的方法和工具。无论您是科研人员、工程师,还是对人工智能和大语言模型感兴趣的技术爱好者,本教程都将为您提供系统的知识和实用的技能。加入我们,共同探索人工智能的无限可能,推动科技创新!
参加条件:需要有针对GPT熟练操作能力以及深度学习的基础知识。
【收获】:
1.系统掌握ChatGPT-4o在科研中的应用技巧,提升科研效率
2.深入理解大语言模型的原理和发展趋势,紧跟前沿技术
3.学会从零构建和优化大语言模型,增强实际操作能力
4.掌握开源大语言模型的本地私有化部署和使用,提升技术应用水平
5.掌握智能体构建的方法和工具,拓展AI应用场景
第一章 ChatGPT-4o使用进阶
1、基于思维链(Chain of Thought)公式的提示词优化(思维链的概念、提示词优化策略与技巧)
2、(实操演练)利用思维链方法优化提示词,提升对话质量
3、GPTs逆向工程:提示词破解(提示词逆向工程的基本原理、分析和破解提示词的方法)
4、(实操演练)对常见GPTs提示词进行逆向工程
5、提示词保护策略以及防止提示词被破解的方法
6、(实操演练)构建坚不可摧的GPTs:设计一个安全的提示词
7、GPT API接口调用与完整项目开发(对话机器人、文本嵌入提取特征)
8、案例演示与实操练习
第二章 大语言模型原理详解
1、注意力机制(基本概念、Self-Attention与Multi-Head Attention)
2、(实操演练)实现一个简单的注意力机制模型
3、Transformer模型架构详解
4、Transformer模型在NLP和CV中的应用
5、BERT模型简介(拓扑结构、训练过程、使用BERT进行文本分类)
6、GPT模型工作原理简介及演化过程(拓扑结构、训练过程、使用GPT进行文本生成)
7、向量数据库简介与向量检索技术详解(使用向量数据库进行快速检索)
8、文本嵌入(Text Embedding)技术概述(常用的文本嵌入模型、使用GPT API)
9、案例演示与实操练习
第三章 大语言模型优化
1、检索增强生成(RAG)技术详解(RAG的基本原理、RAG在大语言模型中的作用和优势、RAG的系统架构、RAG检索结果与生成结果相结合的方法、RAG知识库的构建方法)
2、(实操演练)基于RAG的问答系统设计
3、微调(Fine-Tuning)技术详解(微调的基本原理、微调在大语言模型中的作用、准备一个用于微调的数据集、常见的微调方法,如PEFT、LoRA等、不同任务的微调策略、微调过程中的常见问题与解决方案)
4、(实操演练)微调一个预训练的GPT模型
5、量化技术详解(量化的基本概念、量化在模型优化中的重要性、量化的不同方法,如:静态量化、动态量化、混合量化等、量化处理的步骤)
6、案例演示与实操练习
第四章 开源大语言模型及本地部署
1、开源大语言模型简介(开源大语言模型的基本概念、开源大语言模型与闭源大语言模型的对比)
2、(实操演练)开源大语言模型(Llama3、Mistral、Phi3、Qwen2等)下载与使用
3、(实操演练)使用Docker部署开源大语言模型(Docker的基本概念、Docker的核心组件与功能、Docker的安装与配置、在Docker中部署Llama3等开源大语言模型)
4、(实操演练)使用Open-WebUI构建Web可视化交互(类似ChatGPT)的开源大语言模型对话系统(Open-WebUI的基本概念与功能、Open-WebUI的下载与安装、配置一个用于对话系统的Open-WebUI)
5、案例演示与实操练习
第五章 从0到1搭建第一个大语言模型
1、(实操演练)数据集构建(数据集的收集与处理、从互联网上收集文本数据、数据清洗与标注、常用的数据集格式,如:CSV、JSON、TXT等)
2、(实操演练)大语言预训练模型的选择(预训练模型的优势、常见的预训练模型,如:GPT、BERT等、从Hugging Face等平台下载预训练模型)
3、(实操演练)大语言模型的训练(模型训练的基本步骤、训练过程中的监控与调试)
4、(实操演练)大语言模型的优化(常见训练参数,如:学习率、批次大小等、参数调整与优化技巧、优化训练参数以提高模型性能)
5、(实操演练)大语言模型的推理(模型推理与模型训练的区别、提高推理速度的技巧、从输入到输出的完整推理流程)
6、(实操演练)大语言模型的部署与应用(模型部署的基本流程、部署环境的配置与管理)
第六章 智能体(Agent)构建
1、智能体(Agent)概述(什么是智能体?智能体的类型和应用场景、典型的智能体应用,如:Google Data Science Agent等)
2、构建智能体(Agent)的基本步骤
3、LangChain平台概述(什么是LangChain?LangChain的核心功能与特点、LangChain的核心组件)
4、(实操演练)使用LangChain构建Agent(LangChain的使用流程、LangChain的配置与管理)
5、Coze平台概述
6、(实操演练)使用Coze平台构建Agent
7、案例演示与实操练习
第七章 大语言模型发展趋势
1、大语言模型发展趋势概述(大语言模型的发展历史回顾、当前大语言模型的热点技术、大语言模型的未来方向:更大规模、更高效率、更多模态)
2、多模态大语言模型简介(什么是多模态?多模态数据的常见种类、多模态在NLP和CV中的应用、多模态大语言模型的架构与组件、多模态数据融合与特征提取)
3、(实操演练)多模态大语言模型的训练与优化(多模态数据的标注与处理、多模态模型的训练、多模态模型的性能优化)
4、Mixture of Experts(MoE)简介(什么是Mixture of Experts?MoE的工作原理、MoE模型的架构、Moe的训练与推理、在大语言模型中集成MoE技术)
5、案例演示与实操练习
第八章 总结与答疑讨论
1、总结(关键知识点回顾)
2、答疑与讨论
3、相关学习资料分享与拷贝
4、建立微信群,便于后期的讨论与答疑
注:请提前配置学习所需软件
更多应用
①最新ChatGPT办公与科研应用、论文撰写、数据分析、机器学习、深度学习及AI绘图
②基于ChatGPT-4o自然科学研究全流程实践技术应用
③GPT-ArcGIS数据处理、空间分析、可视化及多案例综合应用
④成像光谱遥感技术中的AI革命:ChatGPT在遥感领域中的应用
⑤AI大语言模型GPT & R生态环境领域数据统计分析实战训练营
⑥“AI大语言模型+”助力大气科学相关交叉领域实践技术应用
ChatGPT4.0最新功能和使用技巧,助力日常生活、学习与工作!_gpt4.0可以学习吗-CSDN博客文章浏览阅读1k次,点赞9次,收藏18次。熟练掌握ChatGPT4.0在数据分析、自动生成代码等方面的强大功能,系统学习人工智能(包括传统机器学习、深度学习等)的基础理论知识,以及具体的代码实现方法,同时掌握ChatGPT4.0在科研工作中的各种使用方法与技巧,以及人工智能领域经典机器学习算法(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)和热门深度学习方法(卷积神经网络、迁移学习、RNN与LSTM神经网络、YOLO目标检测、自编码器等)的基本原理及Python、PyTorch代码实现方法。_gpt4.0可以学习吗https://blog.csdn.net/WangYan2022/article/details/139134786?spm=1001.2014.3001.5502
★ 点 击 关 注,获取海量教程和资源!
↓↓↓
相关文章:
ChatGPT-4o大语言模型优化、本地私有化部署、从0-1搭建、智能体构建等高级进阶
目录 第一章 ChatGPT-4o使用进阶 第二章 大语言模型原理详解 第三章 大语言模型优化 第四章 开源大语言模型及本地部署 第五章 从0到1搭建第一个大语言模型 第六章 智能体(Agent)构建 第七章 大语言模型发展趋势 第八章 总结与答疑讨论 更多应用…...

【开源项目】LocalSend 局域网文件传输工具
【开源项目】LocalSend 局域网文件传输工具 一个免费、开源、跨平台的局域网传输工具 LocalSend 简介 LocalSend 是一个免费的开源跨平台的应用程序,允许用户在不需要互联网连接的情况下,通过本地网络安全地与附近设备共享文件和消息。 项目地址&…...
ARM/Linux嵌入式面经(十一):地平线嵌入式实习
地平线嵌入式实习面经 1.自我介绍 等着,在给大哥们准备了。 2.spi与iic协议可以连接多个设备吗?最多多少个?通讯时序。 这是几个问题,在回答的时候。不要一问就开口,花几秒钟沉吟思考整理一下自己的思路。 这个问题问了几个点?每个点的回答步骤。 是我的话,我会采用以…...

基于Redis的分布式锁
分布式场景下并发安全问题的引发 前面通过加锁解决了单机状态下一人一单的问题,但是当出现了分布式,前面的加锁形式不再适用 ,每个jvm有一个自己的锁监视器,只能被内部线程获取,其他jvm无法使用,那么多台j…...

如何将 Apifox 的自动化测试与 Jenkins 集成?
CI/CD (持续集成/持续交付) 在 API 测试 中的主要目的是为了自动化 API 的验证流程,确保 API 发布到生产环境前的可用性。通过持续集成,我们可以在 API 定义变更时自动执行功能测试,以及时发现潜在问题。 Apifox 支持…...

【FFmpeg】av_write_frame函数
目录 1.av_write_frame1.1 写入pkt(write_packets_common)1.1.1 检查pkt的信息(check_packet)1.1.2 准备输入的pkt(prepare_input_packet)1.1.3 检查码流(check_bitstream)1.1.4 写入…...

【算法专题】双指针算法
1. 移动零 题目分析 对于这类数组分块的问题,我们应该首先想到用双指针的思路来进行处理,因为数组可以通过下标进行访问,所以说我们不用真的定义指针,用下标即可。比如本题就要求将数组划分为零区域和非零区域,我们不…...

Lock与ReentrantLock
在 Java 中,Lock 接口和 ReentrantLock 类提供了比使用 synchronized 方法和代码块更广泛的锁定机制。 简单示例: import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock;public class ReentrantLockExample {pr…...
ARM/Linux嵌入式面经(十三):紫光同芯嵌入式
static关键字 static关键字一文搞懂这个知识点,真的是喜欢考!!! stm32启动时如何配置栈的地址 在STM32启动时配置栈的地址是一个关键步骤,这通常是在启动文件(如startup_stm32fxxx.s,其中xxx代表具体的STM32型号)中完成的。 面试者回答: STM32启动时配置栈的地址主…...
名企面试必问30题(二十四)—— 说说你空窗期做了什么?
回答示例一 在空窗期这段时间,我主要进行了两方面的活动。 一方面,我持续提升自己的专业技能。我系统地学习了最新的软件测试理论和方法,深入研究了自动化测试工具和框架,例如 Selenium、Appium 等,并通过在线课程和实…...
基础权限储存
一、要求: 1、建立用户组shengcan,其id为2000工 2、建立用户组 caiwu,其id为2001 3、建立用户组 jishu,其id 为 2002 4、建立目录/sc,此目录是 shengchan 部门的存储目录,只能被 shengchan 组的成员操作,其他用户没有…...
Could not find a package configuration file provided by “roscpp“ 的参考解决方法
文章目录 写在前面一、问题描述二、解决方法参考链接 写在前面 自己的测试环境: Ubuntu20.04 ROS-Noetic 一、问题描述 编译程序时出现如下报错: -- Could NOT find roscpp (missing: roscpp_DIR) -- Could not find the required component roscpp.…...

运维系列.Nginx配置中的高级指令和流程控制
运维专题 Nginx配置中的高级指令和流程控制 - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite:http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddress of this article:https://blog.csdn.net/…...
Virtualbox和ubuntu之间的关系
1、什么是ubuntu Ubuntu 是一个类似于 Windows 的操作系统,但它是基于 Linux 内核开发的开源操作系统 2、什么是Virtualbox VirtualBox 是一款虚拟机软件,使我们可以物理机上创建和运行虚拟机 也就是说,VirtualBox 提供了一个可以安装和运行其他操作系…...

【在Linux世界中追寻伟大的One Piece】HTTPS协议原理
目录 1 -> HTTPS是什么? 2 -> 相关概念 2.1 -> 什么是"加密" 2.2 -> 为什么要加密 2.3 -> 常见的加密方式 2.4 -> 数据摘要 && 数据指纹 2.5 -> 数字签名 3 -> HTTPS的工作过程 3.1 -> 只使用对称加密 3.2 …...

【WebRTC实现点对点视频通话】
介绍 WebRTC (Web Real-Time Communications) 是一个实时通讯技术,也是实时音视频技术的标准和框架。简单来说WebRTC是一个集大成的实时音视频技术集,包含了各种客户端api、音视频编/解码lib、流媒体传输协议、回声消除、安全传输等。对于开发者来说可以…...

【Unity】RPG2D龙城纷争(八)寻路系统
更新日期:2024年7月4日。 项目源码:第五章发布(正式开始游戏逻辑的章节) 索引 简介一、寻路系统二、寻路规则(角色移动)三、寻路规则(角色攻击)四、角色移动寻路1.自定义寻路规则2.寻…...

C++ 函数高级——函数重载——基本语法
作用:函数名可以相同,提高复用性 函数重载满足条件: 1.同一个作用域下 2.函数名称相同 3.函数参数类型不同 或者 个数不同 或者 顺序不同 注意:函数的返回值不可以作为函数重载的条件 示例: 运行结果:...
Go语言实现的端口扫描工具示例
Go语言实现的端口扫描工具示例 创建一个端口扫描工具涉及到网络编程和并发处理,下面是一个简单的Go语言实现的端口扫描工具示例。这个工具会扫描指定IP地址的指定范围内的端口。 请注意,使用端口扫描工具可能会违反某些网络的使用条款,甚至…...
SpringSecurity初始化过程
SpringSecurity初始化过程 SpringSecurity一定是被Spring加载的: web.xml中通过ContextLoaderListener监听器实现初始化 <!-- 初始化web容器--><!--设置配置文件的路径--><context-param><param-name>contextConfigLocation</param-…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...

前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享
文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的,根据Excel列的需求预估的工时直接打骨折,不要问我为什么,主要…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...

对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...
《C++ 模板》
目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板,就像一个模具,里面可以将不同类型的材料做成一个形状,其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式:templa…...
iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈
在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...