遗传算法求解TSP
一、基本步骤
遗传算法求解旅行商问题(TSP)的一般步骤如下:
-
编码:
- 通常采用整数编码,将城市的访问顺序表示为一个染色体。例如,假设有 5 个城市,编码为[1, 3, 5, 2, 4],表示旅行商的访问顺序为城市 1、城市 3、城市 5、城市 2、城市 4,最后回到出发城市 1。
-
初始化种群:
- 随机生成一定数量的染色体,作为初始种群。
-
适应度评估:
- 计算每个染色体所代表的路径长度,路径长度越短,适应度越高。适应度函数可以是路径长度的倒数或其他与路径长度相关的函数。
-
选择操作:
- 基于适应度,选择一定比例的染色体进入下一代种群。常见的选择方法有轮盘赌选择、锦标赛选择等。
-
交叉操作:
- 对选中的染色体进行交叉,生成新的染色体。例如,单点交叉,随机选择一个交叉点,交换两个染色体在交叉点之后的部分。
-
变异操作:
- 以一定的概率对染色体中的基因进行变异,例如随机交换两个城市的位置。
-
重复步骤 3 - 6 ,直到满足终止条件(如达到预定的迭代次数或找到满意的解)。
通过不断迭代,种群中的染色体逐渐优化,最终得到较优的 TSP 路径。需要注意的是,遗传算法的参数(如种群大小、交叉概率、变异概率等)需要根据具体问题进行调整和优化,以获得更好的求解效果。
二、代码
#!/usr/bin/env python
# coding: utf-8# In[32]:import numpy as np
import copy
import matplotlib
import matplotlib.pyplot as plt
from matplotlib.pyplot import MultipleLocator
import random# In[33]:#准备好距离矩阵
city_num = 5
city_dist_mat = np.zeros([city_num, city_num])
city_dist_mat[0][1] = city_dist_mat[1][0] = 1165
city_dist_mat[0][2] = city_dist_mat[2][0] = 1462
city_dist_mat[0][3] = city_dist_mat[3][0] = 3179
city_dist_mat[0][4] = city_dist_mat[4][0] = 1967
city_dist_mat[1][2] = city_dist_mat[2][1] = 1511
city_dist_mat[1][3] = city_dist_mat[3][1] = 1942
city_dist_mat[1][4] = city_dist_mat[4][1] = 2129
city_dist_mat[2][3] = city_dist_mat[3][2] = 2677
city_dist_mat[2][4] = city_dist_mat[4][2] = 1181
city_dist_mat[3][4] = city_dist_mat[4][3] = 2216
#标号说明
#list_city = ['0_北京', '1_西安', '2_上海', '3_昆明', '4_广州']# In[34]:#1.定义个体类,包括基因(城市路线)和适应度
num_person_idx = 0
num_person = 0
dis_list = []
class Individual:def __init__(self, genes = None):global num_personglobal dis_listglobal num_person_idxnum_person_idx += 1if num_person_idx % 20 == 0:num_person += 1self.genes = genesif self.genes == None:genes = [0]*5temp = [0]*4temp = [i for i in range(1,city_num)]########################################################################random.shuffle(temp)genes[1:] = tempgenes[0] = 0self.genes = genesself.fitness = self.evaluate_fitness()else:self.fitness = float(self.evaluate_fitness())#2. #计算个体的适应度def evaluate_fitness(self):dis = 0for i in range(city_num - 1):dis += city_dist_mat[self.genes[i]][self.genes[i+1]]if i == city_num - 2:dis += city_dist_mat[self.genes[i + 1]][0]#回到0if num_person_idx % 20 == 0:dis_list.append(dis)return 1/dis# In[35]:def copy_list(old):new = []for element in old:new.append(element)return new
def sort_win_num(group):for i in range(len(group)):for j in range(len(group) - i - 1):
# print('group[j].fitness_type', type(group[j].fitness))if group[j].fitness < group[j+1].fitness:temp = group[j]group[j] = group[j+1]group[j+1] = tempreturn group
#定义Ga类
#3~5,交叉、变异、更新种群,全部在Ga类中实现
class Ga:#input_为城市间的距离矩阵def __init__(self, input_):#声明一个全局变量global city_dist_matcity_dist_mat = input_#当代的最佳个体########################################此处做了更改#self.best = Noneself.best = Individual(None)
# print("BBBBBBbest.fitness",self.best.fitness)#种群self.individual_list = []#每一代的最佳个体self.result_list = []#每一代个体对应的最佳适应度self.fitness_list = []#交叉,这里采用交叉变异def cross(self):new_gen = []#随机选取一段,含有num_cross个数字(城市)num_cross = 3#后期可能需要调试的参数,考虑到实际问题里只有5个城市,所以认为3较为合适for i in range(0, len(self.individual_list) - 1, 2):parent_gen1 = copy_list(self.individual_list[i].genes)parent_gen2 = copy_list(self.individual_list[i+1].genes)
# print("parent_gen1",parent_gen1)
# print("parent_gen2",parent_gen2) index1_1 = 0index1_2 = 0index2_1 = 0index2_2 = 0#定义一个下表列表index_list = [0]*3for i in range(city_num - 3):#就是2,即0,1index_list[i] = i + 1index1_1 = random.choice(index_list)index1_2 = index1_1 + 2index2_1 = random.choice(index_list)index2_2 = index2_1 + 2choice_list1 = parent_gen1[index1_1:index1_2 + 1]choice_list2 = parent_gen2[index2_1:index2_2 + 1]
# print("choice_list1",choice_list1)
# print("choice_list2",choice_list2)#利用这一段生成两个子代,下面的赋值只是为了获取长度,所以用哪个父代能可以#也可以直接用city_num直接代替son_gen1 = [0]*city_numson_gen2 = [0]*city_num
# print('son_gen1_size = ',len(son_gen1))
# print('son_gen2_size = ',len(son_gen2))
# print("index1_1 == ",index1_1)
# print("index1_2 == ",index1_2)
# print("index2_1 == ",index2_1)
# print("index2_2 == ",index2_2)#找到之后进行交叉,分别得到son_gen1,son_gen2#先把选中的段复制进去son_gen1[index1_1: index1_2 + 1] = choice_list1son_gen2[index2_1: index2_2 + 1] = choice_list2
# print("now, son_gen1 = ", son_gen1)
# print("now, son_gen2 = ", son_gen2)#然后左、右“查漏补缺”temp1 = choice_list1temp2 = choice_list2if index1_1 == 0:passelse: for i in range(index1_1):for j in range(city_num):#如果父代2里面的这个当初没被选中,那就加入son_gene1if parent_gen2[j] not in choice_list1:son_gen1[i] = parent_gen2[j]#这个时候要扩增choice_list1, 这样parent_gen2里面未被选中的元素才会一个个被遍历到#1choice_list1.append(parent_gen2[j])#找到之后马上break,防止被覆盖breakchoice_list1 = temp1if index1_2 == city_num - 1:passelse:for i in range(index1_2 + 1, city_num):for j in range(city_num):if parent_gen2[j] not in choice_list1:son_gen1[i] = parent_gen2[j]#这个时候要扩增choice_list1, 这样parent_gen2里面未被选中的元素才会一个个被遍历到#2choice_list1.append(parent_gen2[j])#找到之后马上break,防止被覆盖break#son_gen2亦是如此if index2_1 == 0:passelse:for i in range(index2_1):for j in range(city_num):#如果父代1里面的这个当初没被选中,那就加入son_gen2if parent_gen1[j] not in choice_list2:son_gen2[i] = parent_gen1[j]#这个时候要扩增choice_list2, 这样parent_gen1里面未被选中的元素才会一个个被遍历到#3choice_list2.append(parent_gen1[j])#找到之后马上break,防止被覆盖breakchoice_list2 = temp2if index2_2 == city_num - 1:passelse:for i in range(index2_2 + 1, city_num):for j in range(city_num):if parent_gen1[j] not in choice_list2:
# print("i == ", i)son_gen2[i] = parent_gen1[j]#这个时候要扩增choice_list2, 这样parent_gen1里面未被选中的元素才会一个个被遍历到#4choice_list2.append(parent_gen1[j])#找到之后马上break,防止被覆盖break#新生成的子代基因加入new_gene列表
# print('son_gen1 = ',son_gen1)
# print('son_gen2 = ',son_gen2)new_gen.append(Individual(son_gen1))#print('new_gen[-1].genes', new_gen[-1].genes)new_gen.append(Individual(son_gen2))return new_gen#变异def mutate(self, new_gen):mutate_p = 0.02#待调参数index_list = [0]*(city_num-1)index_1 = 1index_2 = 1for i in range(city_num - 1):index_list[i] = i + 1for individual in new_gen:if random.random() < mutate_p:
# change += 1#如果变异,采用基于位置的变异,方便起见,直接使用上面定义的index列表index_l = random.choice(index_list)
# index_2 = (index_1 + 2) % city_num#这里让间隔为2的两个城市进行交换index_2 = random.choice(index_list)while index_1 == index_2:index_2 = random.choice(index_list)#交换temp = individual.genes[index_1]individual.genes[index_1] = individual.genes[index_2]individual.genes[index_2] = temp#变异结束,与老一代的进行合并self.individual_list += new_gen#选择def select(self):#在此选用轮盘赌算法#考虑到5的阶乘是120,所以可供选择的个体基数应该适当大一些,#在此每次从种群中选择6个,进行轮盘赌,初始化60个个体,同时适当调高变异的概率select_num = 6select_list = []for i in range(select_num):gambler = random.choice(self.individual_list)gambler = Individual(gambler.genes)select_list.append(gambler)#求出这些fitness之和sum = 0for i in range(select_num):sum += select_list[i].fitnesssum_m = [0]*select_num#实现概率累加for i in range(select_num):for j in range(i+1):sum_m[i] += select_list[j].fitnesssum_m[i] /= sumnew_select_list = []p_num = 0#随机数for i in range(select_num):p_num = random.uniform(0,1)if p_num>0 and p_num < sum_m[0]:new_select_list.append(select_list[0])elif p_num>= sum_m[0] and p_num < sum_m[1]:new_select_list.append(select_list[1])elif p_num >= sum_m[1] and p_num < sum_m[2]:new_select_list.append(select_list[2])elif p_num >= sum_m[2] and p_num < sum_m[3]:new_select_list.append(select_list[3])elif p_num >= sum_m[3] and p_num < sum_m[4]:new_select_list.append(select_list[4])elif p_num >= sum_m[4] and p_num < sum_m[5]:new_select_list.append(select_list[5])else:pass#将新生成的一代替代父代种群self.individual_list = new_select_list#更新种群def next_gen(self):#交叉new_gene = self.cross()#变异self.mutate(new_gene)#选择self.select()#获得这一代的最佳个体
# print("**************************************")
# print('self.best.fitness = ', self.best.fitness)
# print('now, best.fitness = ', self.best.fitness)for individual in self.individual_list:if individual.fitness > self.best.fitness:self.best = individual
# print("更换了最优路径")
# print('now, best.fitness = ', self.best.fitness)def train(self):#随机出初代种群#individual_num = 60self.individual_list = [Individual() for _ in range(individual_num)]#迭代gen_num = 100for i in range(gen_num):#从当代种群中交叉、变异、选择出适应度最佳的个体,获得子代产生新的种群self.next_gen()#连接首位
# print("i = ", i)result = copy.deepcopy(self.best.genes)result.append(result[0])self.result_list.append(result)self.fitness_list.append(self.best.fitness)print(self.result_list[-1])print('距离总和是:', 1/self.fitness_list[-1])
# return self.result_list, self.fitness_listdef draw(self):x_list = [i for i in range(num_person)]y_list = dis_listplt.rcParams['figure.figsize'] = (60, 45)plt.plot(x_list, y_list, color = 'g')plt.xlabel('Cycles',size = 50)plt.ylabel('Route',size = 50)x = np.arange(0, 910, 20)y = np.arange(7800, 12000, 100)plt.xticks(x)plt.yticks(y)plt.title('Trends in distance changes', size = 50)plt.tick_params(labelsize=30)
# plt.savefig("D:\AI_pictures\遗传算法求解TSP问题_1_轮盘赌算法")plt.show()
route = Ga(city_dist_mat)
route.train()
route.draw()
相关文章:
遗传算法求解TSP
一、基本步骤 遗传算法求解旅行商问题(TSP)的一般步骤如下: 编码: 通常采用整数编码,将城市的访问顺序表示为一个染色体。例如,假设有 5 个城市,编码为[1, 3, 5, 2, 4],表示旅行商的…...

鸿蒙开发:Universal Keystore Kit(密钥管理服务)【明文导入密钥(C/C++)】
明文导入密钥(C/C) 以明文导入ECC密钥为例。具体的场景介绍及支持的算法规格 在CMake脚本中链接相关动态库 target_link_libraries(entry PUBLIC libhuks_ndk.z.so)开发步骤 指定密钥别名keyAlias。 密钥别名的最大长度为64字节。 封装密钥属性集和密钥材料。通过[OH_Huks_I…...

视频汇聚/安防监控/GB28181国标EasyCVR视频综合管理平台出现串流的原因排查及解决
安防视频监控系统/视频汇聚EasyCVR视频综合管理平台,采用了开放式的网络结构,能在复杂的网络环境中(专网、局域网、广域网、VPN、公网等)将前端海量的设备进行统一集中接入与视频汇聚管理,视频汇聚EasyCVR平台支持设备…...

TypeError: Cannot read properties of null (reading ‘nextSibling‘)
做项目用的Vue3Vite, 在画静态页面时,点击菜单跳转之后总是出现如下报错,百思不得其解。看了网上很多回答,也没有解决问题,然后试了很多方法,最后竟然发现是template里边没有结构的原因。。。 原来我的index.vue是这样…...

解决 npm intasll 安装报错 Error: EPERM: operation not permitted
Node.js安装及环境配置完成之后 npm install express -g 安装全局的模块报错提示没有权限operation not permitted mkdir 错误编号4048: 其原因是当前用户操作该目录权限不足,当以管理员身份运行cmd,再执行npm install express -g 是不会报权…...
redis实用技能
为什么要使用redis及其使用场景 大部分场景是应对高并发高性能场景才会使用,就是访问量已经超过mysql所能承受的,需要做缓存,帮助mysql分流。或者一些复杂查询,mysql执行很慢没法优化,可以做缓存提速(做缓存)做认证服务的时候需要存储用户的session信息,使用redis数据有…...

AcWing 1260:二叉树输出
【题目来源】https://www.acwing.com/problem/content/1262/【题目描述】 树的凹入表示法主要用于树的屏幕或打印输出,其表示的基本思想是兄弟间等长,一个结点的长度要不小于其子结点的长度。 二叉树也可以这样表示,假设叶结点的长度为 1&…...

刷爆leetcode第十期
题目一 相同的树 给你两棵二叉树的根节点 p 和 q ,编写一个函数来检验这两棵树是否相同。 如果两个树在结构上相同,并且节点具有相同的值,则认为它们是相同的。 首先我们要来判断下它们的根是否相等 根相等的话是否它们的左子树相等 是否…...

Python28-7.5 降维算法之t-分布邻域嵌入t-SNE
t-分布邻域嵌入(t-distributed Stochastic Neighbor Embedding,t-SNE)是一种用于数据降维和可视化的机器学习算法,尤其适用于高维数据的降维。t-SNE通过将高维数据嵌入到低维空间(通常是二维或三维)中&…...

一个最简单的comsol斜坡稳定性分析例子——详细步骤
一个最简单的comsol斜坡稳定性分析例子——详细步骤 标准模型例子—详细步骤 线弹性模型下的地应力平衡预应力与预应变、土壤塑性和安全系数求解的辅助扫描...
Java 变量类型
在Java中,变量类型包括基本数据类型和引用数据类型,每种类型有其特定的用途和存储方式。 ### 1. 基本数据类型 Java的基本数据类型包括整数类型、浮点类型、字符类型和布尔类型,它们分别是: - **整数类型**:用于存储…...

【排序算法】—— 快速排序
快速排序的原理是交换排序,其中qsort函数用的排序原理就是快速排序,它是一种效率较高的不稳定函数,时间复杂度为O(N*longN),接下来就来学习一下快速排序。 一、快速排序思路 1.整体思路 以升序排序为例: (1)、首先随…...

前端JS特效第22波:jQuery滑动手风琴内容切换特效
jQuery滑动手风琴内容切换特效,先来看看效果: 部分核心的代码如下: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xm…...
redis的数据类型对应的使用场景
Redis提供了多种数据类型,每种数据类型都有其特定的适用场景。以下是Redis主要数据类型及其典型应用场景:1. 字符串(String) 应用场景:适用于存储简单的键值对数据,如用户基本信息、计数器(如网页访问次数&…...

ctfshow-web入门-命令执行(web118详解)Linux 内置变量与Bash切片
输入数字和小写字母,回显 evil input 查看源码,发现这里会将提交的参数 code 传给 system 函数 使用 burpsuite 抓包进行单个字符的模糊测试 fuzz: 发现过滤掉了数字和小写字母以及一些符号,下面框起来的部分是可用的 结合题目提…...

C语言 指针和数组——指针和二维数组之间的关系
目录 换个角度看二维数组 指向二维数组的行指针 按行指针访问二维数组元素 再换一个角度看二维数组 按列指针访问二维数组元素 二维数组作函数参数 指向二维数组的行指针作函数参数 指向二维数组的列指针作函数参数编辑 用const保护你传给函数的数据 小结 换个角度看…...

问题集锦1
01.inner中使用JwtTokenUtil.getUserCode() 前端调用上传(java),上传使用加购 Overridepublic Boolean insertShoppingCart(InsertShoppingCartParamsDto dto) {// 通过userCode,itemCode和supplierCode来判断当前加购人添加到购物车的商品是…...

浅析MySQL-索引篇01
什么是索引? 索引是帮助存储引擎快速获取数据的一种数据结构,类似于数据的目录。 索引的分类 按数据结构分类: MySQL 常见索引有 BTree 索引、HASH 索引、Full-Text 索引。 Innodb是MySQL5.5之后的默认存储引擎,BTree索引类型也…...
2028年企业云存储支出翻倍,达到1280亿美元
根据Omdia的研究,到2028年,企业云存储支出将从去年的570亿美元翻一番以上,达到1280亿美元。该研究分析了基础设施即服务(IaaS)和平台即服务(PaaS)数据中心的收入,作为年度存储数据服…...
ActiViz中的颜色映射表vtkLookupTable
文章目录 一、简介二、VtkLookupTable的创建与初始化三、设置数据范围四、颜色映射设置五、不透明度设置六、自定义颜色映射七、 不连续性颜色映射八、 预设颜色映射方案九、可视化效果优化十、与其他VTK组件的整合十一、 动态调整映射表十二、保存和加载颜色映射表一、简介 V…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...

Debian系统简介
目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版ÿ…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
【HTTP三个基础问题】
面试官您好!HTTP是超文本传输协议,是互联网上客户端和服务器之间传输超文本数据(比如文字、图片、音频、视频等)的核心协议,当前互联网应用最广泛的版本是HTTP1.1,它基于经典的C/S模型,也就是客…...

多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...