当前位置: 首页 > news >正文

深度学习:C++和Python如何对大图进行小目标检测

        最近在医美和工业两条线来回穿梭,甚是疲倦,一会儿搞搞医美的人像美容,一会儿搞搞工业的检测,最近新接的一个项目,关于瑕疵检测的,目标图像也并不是很大吧,需要放大后,才能看见细小的瑕疵目标。有两种,一种是912*5000的图,一种是1024*2048的图,但是深度学习训练的时候,对图像的大小有一定的限制,比方说我的电脑配置可能就只能最大跑1024*1024大小的图像,否则就出现内存溢出,无法进行训练,对于这种912*5000的图就比较不好训练,如果把它强制转化成912*912大小的话,细小的目标可能会丢失。所以只能对其进行裁剪,如何裁剪,裁剪的多大,这样根据你自己的图像情况去设置,比方说你的图像是有一些冗余信息的,可以考虑裁剪的时候把空白区域裁剪出去,反正具体问题具体分析吧。具体最后瑕疵检测我用的哪个模型,这里就不赘述了,这里主要是想总结一些图像裁剪的方法,代码实现,以供大家参考使用。

 方法1、

std::vector<std::vector<int64_t>> compute_steps_for_sliding_window(std::vector<int64_t> image_size, std::vector<int64_t> tile_size, double tile_step_size)
{std::vector<double> target_step_sizes_in_voxels(tile_size.size());for (int i = 0; i < tile_size.size(); ++i)target_step_sizes_in_voxels[i] = tile_size[i] * tile_step_size;std::vector<int64_t> num_steps(tile_size.size());for (size_t i = 0; i < image_size.size(); ++i)num_steps[i] = static_cast<int64_t>(std::ceil((image_size[i] - tile_size[i]) / target_step_sizes_in_voxels[i])) + 1;std::vector<std::vector<int64_t>> steps;for (int dim = 0; dim < tile_size.size(); ++dim) {int64_t max_step_value = image_size[dim] - tile_size[dim];double actual_step_size;if (num_steps[dim] > 1)actual_step_size = static_cast<double>(max_step_value) / (num_steps[dim] - 1);elseactual_step_size = 99999999999;std::vector<int64_t> steps_here(num_steps[dim]);for (size_t i = 0; i < num_steps[dim]; ++i)steps_here[i] = static_cast<int64_t>(std::round(actual_step_size * i));steps.push_back(steps_here);}return steps;
}

 方法2:

std::vector<cv::Mat> splitImageIntoBlocks(const cv::Mat& image, int blockSize) {std::vector<cv::Mat> blocks;int rows = image.rows / blockSize;int cols = image.cols / blockSize;for (int i = 0; i < rows; ++i) {for (int j = 0; j < cols; ++j) {cv::Rect roi(j * blockSize, i * blockSize, blockSize, blockSize);cv::Mat block = image(roi).clone();blocks.push_back(block);}}return blocks;
}

方法3:

int divideImage(const cv::Mat& img, int blockWidth,int blockHeight,std::vector<cv::Mat>& blocks){// init image dimensionsint imgWidth = img.cols;int imgHeight = img.rows;std::cout << "IMAGE SIZE: " << "(" << imgWidth << "," << imgHeight << ")" << std::endl;// init block dimensionsint bwSize;int bhSize;int y0 = 0;while (y0 < imgHeight){// compute the block heightbhSize = ((y0 + blockHeight) > imgHeight) * (blockHeight - (y0 + blockHeight - imgHeight)) + ((y0 + blockHeight) <= imgHeight) * blockHeight;int x0 = 0;while (x0 < imgWidth){// compute the block heightbwSize = ((x0 + blockWidth) > imgWidth) * (blockWidth - (x0 + blockWidth - imgWidth)) + ((x0 + blockWidth) <= imgWidth) * blockWidth;// crop blockblocks.push_back(img(cv::Rect(x0, y0, bwSize, bhSize)).clone());// update x-coordinatex0 = x0 + blockWidth;}// update y-coordinatey0 = y0 + blockHeight;}return 0;
}

代码细节就不在描述了哈,自己理解吧,上面是c++的实现,下面写一个python实现的也比较简单,直接利用滑动框的库SAHI,只要pip这个库,调用这个库里的滑动框函数就可以了实现了。

代码如下 :

# arrange an instance segmentation model for test
from sahi import AutoDetectionModel
import time
import cv2
from sahi.utils.cv import read_image
from sahi.utils.file import download_from_url
from sahi.predict import get_prediction, get_sliced_prediction, predict
from IPython.display import Image
model_path = 'runs/train/exp/weights/best.pt'
detection_model = AutoDetectionModel.from_pretrained(model_type='xxx',model_path=model_path,confidence_threshold=0.3,device="cuda:0", # or 'cuda:0'
)
image_name="anormal.jpg"
currentTime = time.time()
result = get_sliced_prediction("test/"+image_name,detection_model,slice_height = 640,slice_width = 640,overlap_height_ratio = 0.2,overlap_width_ratio = 0.2
)
result.export_visuals(export_dir="test/",file_name="output_"+image_name)#图像保存,output_anormal.jpg
endTime = time.time()
print("时间差:", endTime - currentTime)

关于这里面的model_type的变量值,我此处用xx表示了,你可以在代码里按住ctr。点函数

AutoDetectionModel进到相应类的脚本,在脚本最上方有model_tpye变量里选择你用的模型,比方说你用的yolov8,那么xxx就置换为yolov8。
MODEL_TYPE_TO_MODEL_CLASS_NAME = {"yolov8": "Yolov8DetectionModel","rtdetr": "RTDetrDetectionModel","mmdet": "MmdetDetectionModel","yolov5": "Yolov5DetectionModel","detectron2": "Detectron2DetectionModel","huggingface": "HuggingfaceDetectionModel","torchvision": "TorchVisionDetectionModel","yolov5sparse": "Yolov5SparseDetectionModel","yolonas": "YoloNasDetectionModel","yolov8onnx": "Yolov8OnnxDetectionModel",
}

然后运行就可以了。不在细细描述了,自己研究吧。不理解的可以评论询问。

相关文章:

深度学习:C++和Python如何对大图进行小目标检测

最近在医美和工业两条线来回穿梭&#xff0c;甚是疲倦&#xff0c;一会儿搞搞医美的人像美容&#xff0c;一会儿搞搞工业的检测&#xff0c;最近新接的一个项目&#xff0c;关于瑕疵检测的&#xff0c;目标图像也并不是很大吧&#xff0c;需要放大后&#xff0c;才能看见细小的…...

Eureka从入门到精通面试题及答案参考

什么是Eureka?它在微服务架构中扮演什么角色? Eureka是Netflix开源的一款基于REST的服务发现组件,它主要应用于构建分布式系统中的服务注册与发现。在微服务架构中,Eureka扮演着至关重要的角色,它让微服务架构中的各个服务实例能够互相发现、相互调用,从而实现了服务之间…...

io流 多线程

目录 一、io流 1.什么是io流 2.流的方向 i.输入流 ii.输出流 3.操作文件的类型 i.字节流 1.拷贝 ii.字符流 ​3.字符流输出流出数据 4.字节流和字符流的使用场景 5.练习 6.缓冲流 1.字节缓冲流拷贝文件 2.字符缓冲流特有的方法 1.方法 2.总结 7.转换流基本用法…...

人工智能、机器学习、神经网络、深度学习和卷积神经网络的概念和关系

人工智能&#xff08;Artificial Intelligence&#xff0c;缩写为AI&#xff09;--又称为机器智能&#xff0c;是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是智能学科重要的组成部分&#xff0c;它企图了解智能的实质…...

对话大模型Prompt是否需要礼貌点?

大模型相关目录 大模型&#xff0c;包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容 从0起步&#xff0c;扬帆起航。 基于Dify的QA数据集构建&#xff08;附代码&#xff09;Qwen-2-7B和GLM-4-9B&#x…...

【驱动篇】龙芯LS2K0300之ADC驱动

实验目的 由于LS2K0300久久派开发板4.19内核还没有现成可用的ADC驱动&#xff0c;但是龙芯官方的5.10内核已经提供了ADC驱动&#xff0c;想要在4.19内核使用ADC就要参考5.10内核移植驱动&#xff0c;本次实验主要是关于ADC驱动的移植和使用 驱动移植 主要的驱动代码主要有3个…...

Python入门 2024/7/3

目录 for循环的基础语法 遍历字符串 练习&#xff1a;数一数有几个a range语句 三个语法 语法1 语法2 语法3 练习&#xff1a;有几个偶数 变量作用域 for循环的嵌套使用 打印九九乘法表 发工资案例 continue和break语句 函数的基础定义语法 函数声明 函数调用 …...

Go 语言 Map(集合)

Go 语言 Map(集合) Map 是 Go 语言中一种非常重要的数据结构,它用于存储键值对。在 Go 中,Map 是一种无序的键值对的集合,其中每个键都是唯一的,而值则可以是任何类型。Map 是 Go 语言的内置类型,使用起来非常方便,同时也是许多 Go 程序中不可或缺的一部分。 Map 的声明…...

SpringCloud学习Day7:Seata

概念 Seata是一款开源的分布式事务解决方案&#xff0c;致力于在微服务架构下提供高性能和简单易用的分布式事务服务 工作流程 TC以Seata服务器形式独立部署&#xff0c;TM和RM则是以Seata Client的形式集成在微服务中运行...

【ubuntu中关于驱动得问题】—— 如何将nouveau驱动程序加入黑名单和安装NVIDIA显卡驱动

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、nouveau驱动程序加入黑名单二、安装NVIDIA显卡驱动总结 前言 NVIDIA显卡驱动是用于支持和优化NVIDIA显卡在计算机系统中运行的关键软件组件。该驱动程序能…...

LabVIEW从测试曲线中提取特征值

在LabVIEW中开发用于从测试曲线中提取特征值的功能时&#xff0c;可以考虑以下几点&#xff1a; 数据采集与处理&#xff1a; 确保你能够有效地采集和处理测试曲线数据。这可能涉及使用DAQ模块或其他数据采集设备来获取曲线数据&#xff0c;并在LabVIEW中进行处理和分析。 特…...

【应届应知应会】SQL常用知识点50道

SueWakeup 个人主页&#xff1a;SueWakeup 系列专栏&#xff1a;借他一双眼&#xff0c;愿这盛世如先生所愿 个性签名&#xff1a;人生乏味啊&#xff0c;我欲令之光怪陆离 本文封面由 凌七七~❤ 友情提供 目录 数据库的概念 (什么是数据库) RDBMS NOSQL 数据库的分类 …...

【雷丰阳-谷粒商城 】【分布式高级篇-微服务架构篇】【21】【购物车】

持续学习&持续更新中… 守破离 【雷丰阳-谷粒商城 】【分布式高级篇-微服务架构篇】【21】【购物车】 购物车需求描述购物车数据结构数据Model抽取实现流程&#xff08;参照京东&#xff09;代码实现参考 购物车需求描述 用户可以在登录状态下将商品添加到购物车【用户购物…...

科技赋能智慧应急:“数字孪生+无人机”在防汛救灾中的应用

近期&#xff0c;全国多地暴雨持续&#xff0c;“麻辣王子工厂停工”“水上派出所成水上的派出所了”等相关词条冲上热搜&#xff0c;让人们看到了全国各地城市内涝、洪涝带来的严重灾情。暴雨带来的影响可见一斑&#xff0c;潜在的洪水、泥石流、山体滑坡等地质灾害更应提高警…...

urfread刷算法|构建一棵树

大意 示例标签串&#xff1a; 处理结果&#xff1a; 题目1 根据标签串创建树 需求 需求&#xff1a;给出一个字符串&#xff0c;将这个字符串转换为一棵树。 字符串可以在代码里见到&#xff0c;是以#开头&#xff0c;按照\分割的字符串。 你需要将这个字符串&#xff0…...

在卷积神经网络(CNN)中为什么可以使用多个较小的卷积核替代一个较大的卷积核,以达到相同的感受野

在卷积神经网络&#xff08;CNN&#xff09;中为什么可以使用多个较小的卷积核替代一个较大的卷积核&#xff0c;以达到相同的感受野 flyfish 在卷积神经网络&#xff08;CNN&#xff09;中&#xff0c;可以使用多个较小的卷积核替代一个较大的卷积核&#xff0c;以达到相同的…...

【学习笔记】Mybatis-Plus(四):MP中内置的插件

内置插件 目前MP已经存在的内部插件包括如下&#xff1a; 插件类名作用PaginationInnerInterceptor分页插件。可以代替以前的PageHelperOptimisticLockerInnerInterceptor乐观锁插件。用于幂等性操作&#xff0c;采用版本更新记录DynamicTableNameInnerInterceptor动态表名Te…...

GlusterFS分布式存储系统

GlusterFS分布式存储系统 一&#xff0c;分布式文件系统理论基础 1.1 分布式文件系统出现 计算机通过文件系统管理&#xff0c;存储数据&#xff0c;而现在数据信息爆炸的时代中人们可以获取的数据成指数倍的增长&#xff0c;单纯通过增加硬盘个数来扩展计算机文件系统的存储…...

微信公众平台测试账号本地微信功能测试说明

使用场景 在本地测试微信登录功能时&#xff0c;因为微信需要可以互联网访问的域名接口&#xff0c;所以本地使用花生壳做内网穿透&#xff0c;将前端服务的端口和后端服务端口进行绑定&#xff0c;获得花生壳提供的两个外网域名。 微信测试账号入口 绑定回调接口 回调接口的…...

Lua语言入门

目录 Lua语言1 搭建Lua开发环境1.1 安装Lua解释器WindowsLinux 1.2 IntelliJ安装Lua插件在线安装本地安装 2 Lua语法2.1 数据类型2.2 变量全局变量局部变量命名规范局部变量作用域 2.3 注释单行注释多行注释 2.4 赋值2.5 操作符数学操作符比较操作符逻辑操作符连接操作符取长度…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

基于算法竞赛的c++编程(28)结构体的进阶应用

结构体的嵌套与复杂数据组织 在C中&#xff0c;结构体可以嵌套使用&#xff0c;形成更复杂的数据结构。例如&#xff0c;可以通过嵌套结构体描述多层级数据关系&#xff1a; struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误

HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误&#xff0c;它们的含义、原因和解决方法都有显著区别。以下是详细对比&#xff1a; 1. HTTP 406 (Not Acceptable) 含义&#xff1a; 客户端请求的内容类型与服务器支持的内容类型不匹…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室&#xff08;Algorithms, Machines, and People Lab&#xff09;开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目&#xff0c;8个月后成为Apache顶级项目&#xff0c;速度之快足见过人之处&…...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序

一、开发准备 ​​环境搭建​​&#xff1a; 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 ​​项目创建​​&#xff1a; File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式&#xff1a; 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...