深度学习:C++和Python如何对大图进行小目标检测
最近在医美和工业两条线来回穿梭,甚是疲倦,一会儿搞搞医美的人像美容,一会儿搞搞工业的检测,最近新接的一个项目,关于瑕疵检测的,目标图像也并不是很大吧,需要放大后,才能看见细小的瑕疵目标。有两种,一种是912*5000的图,一种是1024*2048的图,但是深度学习训练的时候,对图像的大小有一定的限制,比方说我的电脑配置可能就只能最大跑1024*1024大小的图像,否则就出现内存溢出,无法进行训练,对于这种912*5000的图就比较不好训练,如果把它强制转化成912*912大小的话,细小的目标可能会丢失。所以只能对其进行裁剪,如何裁剪,裁剪的多大,这样根据你自己的图像情况去设置,比方说你的图像是有一些冗余信息的,可以考虑裁剪的时候把空白区域裁剪出去,反正具体问题具体分析吧。具体最后瑕疵检测我用的哪个模型,这里就不赘述了,这里主要是想总结一些图像裁剪的方法,代码实现,以供大家参考使用。
方法1、
std::vector<std::vector<int64_t>> compute_steps_for_sliding_window(std::vector<int64_t> image_size, std::vector<int64_t> tile_size, double tile_step_size)
{std::vector<double> target_step_sizes_in_voxels(tile_size.size());for (int i = 0; i < tile_size.size(); ++i)target_step_sizes_in_voxels[i] = tile_size[i] * tile_step_size;std::vector<int64_t> num_steps(tile_size.size());for (size_t i = 0; i < image_size.size(); ++i)num_steps[i] = static_cast<int64_t>(std::ceil((image_size[i] - tile_size[i]) / target_step_sizes_in_voxels[i])) + 1;std::vector<std::vector<int64_t>> steps;for (int dim = 0; dim < tile_size.size(); ++dim) {int64_t max_step_value = image_size[dim] - tile_size[dim];double actual_step_size;if (num_steps[dim] > 1)actual_step_size = static_cast<double>(max_step_value) / (num_steps[dim] - 1);elseactual_step_size = 99999999999;std::vector<int64_t> steps_here(num_steps[dim]);for (size_t i = 0; i < num_steps[dim]; ++i)steps_here[i] = static_cast<int64_t>(std::round(actual_step_size * i));steps.push_back(steps_here);}return steps;
}
方法2:
std::vector<cv::Mat> splitImageIntoBlocks(const cv::Mat& image, int blockSize) {std::vector<cv::Mat> blocks;int rows = image.rows / blockSize;int cols = image.cols / blockSize;for (int i = 0; i < rows; ++i) {for (int j = 0; j < cols; ++j) {cv::Rect roi(j * blockSize, i * blockSize, blockSize, blockSize);cv::Mat block = image(roi).clone();blocks.push_back(block);}}return blocks;
}
方法3:
int divideImage(const cv::Mat& img, int blockWidth,int blockHeight,std::vector<cv::Mat>& blocks){// init image dimensionsint imgWidth = img.cols;int imgHeight = img.rows;std::cout << "IMAGE SIZE: " << "(" << imgWidth << "," << imgHeight << ")" << std::endl;// init block dimensionsint bwSize;int bhSize;int y0 = 0;while (y0 < imgHeight){// compute the block heightbhSize = ((y0 + blockHeight) > imgHeight) * (blockHeight - (y0 + blockHeight - imgHeight)) + ((y0 + blockHeight) <= imgHeight) * blockHeight;int x0 = 0;while (x0 < imgWidth){// compute the block heightbwSize = ((x0 + blockWidth) > imgWidth) * (blockWidth - (x0 + blockWidth - imgWidth)) + ((x0 + blockWidth) <= imgWidth) * blockWidth;// crop blockblocks.push_back(img(cv::Rect(x0, y0, bwSize, bhSize)).clone());// update x-coordinatex0 = x0 + blockWidth;}// update y-coordinatey0 = y0 + blockHeight;}return 0;
}
代码细节就不在描述了哈,自己理解吧,上面是c++的实现,下面写一个python实现的也比较简单,直接利用滑动框的库SAHI,只要pip这个库,调用这个库里的滑动框函数就可以了实现了。
代码如下 :
# arrange an instance segmentation model for test
from sahi import AutoDetectionModel
import time
import cv2
from sahi.utils.cv import read_image
from sahi.utils.file import download_from_url
from sahi.predict import get_prediction, get_sliced_prediction, predict
from IPython.display import Image
model_path = 'runs/train/exp/weights/best.pt'
detection_model = AutoDetectionModel.from_pretrained(model_type='xxx',model_path=model_path,confidence_threshold=0.3,device="cuda:0", # or 'cuda:0'
)
image_name="anormal.jpg"
currentTime = time.time()
result = get_sliced_prediction("test/"+image_name,detection_model,slice_height = 640,slice_width = 640,overlap_height_ratio = 0.2,overlap_width_ratio = 0.2
)
result.export_visuals(export_dir="test/",file_name="output_"+image_name)#图像保存,output_anormal.jpg
endTime = time.time()
print("时间差:", endTime - currentTime)
关于这里面的model_type的变量值,我此处用xx表示了,你可以在代码里按住ctr。点函数
AutoDetectionModel进到相应类的脚本,在脚本最上方有model_tpye变量里选择你用的模型,比方说你用的yolov8,那么xxx就置换为yolov8。
MODEL_TYPE_TO_MODEL_CLASS_NAME = {"yolov8": "Yolov8DetectionModel","rtdetr": "RTDetrDetectionModel","mmdet": "MmdetDetectionModel","yolov5": "Yolov5DetectionModel","detectron2": "Detectron2DetectionModel","huggingface": "HuggingfaceDetectionModel","torchvision": "TorchVisionDetectionModel","yolov5sparse": "Yolov5SparseDetectionModel","yolonas": "YoloNasDetectionModel","yolov8onnx": "Yolov8OnnxDetectionModel",
}
然后运行就可以了。不在细细描述了,自己研究吧。不理解的可以评论询问。
相关文章:
深度学习:C++和Python如何对大图进行小目标检测
最近在医美和工业两条线来回穿梭,甚是疲倦,一会儿搞搞医美的人像美容,一会儿搞搞工业的检测,最近新接的一个项目,关于瑕疵检测的,目标图像也并不是很大吧,需要放大后,才能看见细小的…...
Eureka从入门到精通面试题及答案参考
什么是Eureka?它在微服务架构中扮演什么角色? Eureka是Netflix开源的一款基于REST的服务发现组件,它主要应用于构建分布式系统中的服务注册与发现。在微服务架构中,Eureka扮演着至关重要的角色,它让微服务架构中的各个服务实例能够互相发现、相互调用,从而实现了服务之间…...

io流 多线程
目录 一、io流 1.什么是io流 2.流的方向 i.输入流 ii.输出流 3.操作文件的类型 i.字节流 1.拷贝 ii.字符流 3.字符流输出流出数据 4.字节流和字符流的使用场景 5.练习 6.缓冲流 1.字节缓冲流拷贝文件 2.字符缓冲流特有的方法 1.方法 2.总结 7.转换流基本用法…...

人工智能、机器学习、神经网络、深度学习和卷积神经网络的概念和关系
人工智能(Artificial Intelligence,缩写为AI)--又称为机器智能,是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是智能学科重要的组成部分,它企图了解智能的实质…...

对话大模型Prompt是否需要礼貌点?
大模型相关目录 大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容 从0起步,扬帆起航。 基于Dify的QA数据集构建(附代码)Qwen-2-7B和GLM-4-9B&#x…...

【驱动篇】龙芯LS2K0300之ADC驱动
实验目的 由于LS2K0300久久派开发板4.19内核还没有现成可用的ADC驱动,但是龙芯官方的5.10内核已经提供了ADC驱动,想要在4.19内核使用ADC就要参考5.10内核移植驱动,本次实验主要是关于ADC驱动的移植和使用 驱动移植 主要的驱动代码主要有3个…...

Python入门 2024/7/3
目录 for循环的基础语法 遍历字符串 练习:数一数有几个a range语句 三个语法 语法1 语法2 语法3 练习:有几个偶数 变量作用域 for循环的嵌套使用 打印九九乘法表 发工资案例 continue和break语句 函数的基础定义语法 函数声明 函数调用 …...
Go 语言 Map(集合)
Go 语言 Map(集合) Map 是 Go 语言中一种非常重要的数据结构,它用于存储键值对。在 Go 中,Map 是一种无序的键值对的集合,其中每个键都是唯一的,而值则可以是任何类型。Map 是 Go 语言的内置类型,使用起来非常方便,同时也是许多 Go 程序中不可或缺的一部分。 Map 的声明…...

SpringCloud学习Day7:Seata
概念 Seata是一款开源的分布式事务解决方案,致力于在微服务架构下提供高性能和简单易用的分布式事务服务 工作流程 TC以Seata服务器形式独立部署,TM和RM则是以Seata Client的形式集成在微服务中运行...

【ubuntu中关于驱动得问题】—— 如何将nouveau驱动程序加入黑名单和安装NVIDIA显卡驱动
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、nouveau驱动程序加入黑名单二、安装NVIDIA显卡驱动总结 前言 NVIDIA显卡驱动是用于支持和优化NVIDIA显卡在计算机系统中运行的关键软件组件。该驱动程序能…...

LabVIEW从测试曲线中提取特征值
在LabVIEW中开发用于从测试曲线中提取特征值的功能时,可以考虑以下几点: 数据采集与处理: 确保你能够有效地采集和处理测试曲线数据。这可能涉及使用DAQ模块或其他数据采集设备来获取曲线数据,并在LabVIEW中进行处理和分析。 特…...

【应届应知应会】SQL常用知识点50道
SueWakeup 个人主页:SueWakeup 系列专栏:借他一双眼,愿这盛世如先生所愿 个性签名:人生乏味啊,我欲令之光怪陆离 本文封面由 凌七七~❤ 友情提供 目录 数据库的概念 (什么是数据库) RDBMS NOSQL 数据库的分类 …...

【雷丰阳-谷粒商城 】【分布式高级篇-微服务架构篇】【21】【购物车】
持续学习&持续更新中… 守破离 【雷丰阳-谷粒商城 】【分布式高级篇-微服务架构篇】【21】【购物车】 购物车需求描述购物车数据结构数据Model抽取实现流程(参照京东)代码实现参考 购物车需求描述 用户可以在登录状态下将商品添加到购物车【用户购物…...

科技赋能智慧应急:“数字孪生+无人机”在防汛救灾中的应用
近期,全国多地暴雨持续,“麻辣王子工厂停工”“水上派出所成水上的派出所了”等相关词条冲上热搜,让人们看到了全国各地城市内涝、洪涝带来的严重灾情。暴雨带来的影响可见一斑,潜在的洪水、泥石流、山体滑坡等地质灾害更应提高警…...

urfread刷算法|构建一棵树
大意 示例标签串: 处理结果: 题目1 根据标签串创建树 需求 需求:给出一个字符串,将这个字符串转换为一棵树。 字符串可以在代码里见到,是以#开头,按照\分割的字符串。 你需要将这个字符串࿰…...

在卷积神经网络(CNN)中为什么可以使用多个较小的卷积核替代一个较大的卷积核,以达到相同的感受野
在卷积神经网络(CNN)中为什么可以使用多个较小的卷积核替代一个较大的卷积核,以达到相同的感受野 flyfish 在卷积神经网络(CNN)中,可以使用多个较小的卷积核替代一个较大的卷积核,以达到相同的…...
【学习笔记】Mybatis-Plus(四):MP中内置的插件
内置插件 目前MP已经存在的内部插件包括如下: 插件类名作用PaginationInnerInterceptor分页插件。可以代替以前的PageHelperOptimisticLockerInnerInterceptor乐观锁插件。用于幂等性操作,采用版本更新记录DynamicTableNameInnerInterceptor动态表名Te…...

GlusterFS分布式存储系统
GlusterFS分布式存储系统 一,分布式文件系统理论基础 1.1 分布式文件系统出现 计算机通过文件系统管理,存储数据,而现在数据信息爆炸的时代中人们可以获取的数据成指数倍的增长,单纯通过增加硬盘个数来扩展计算机文件系统的存储…...

微信公众平台测试账号本地微信功能测试说明
使用场景 在本地测试微信登录功能时,因为微信需要可以互联网访问的域名接口,所以本地使用花生壳做内网穿透,将前端服务的端口和后端服务端口进行绑定,获得花生壳提供的两个外网域名。 微信测试账号入口 绑定回调接口 回调接口的…...

Lua语言入门
目录 Lua语言1 搭建Lua开发环境1.1 安装Lua解释器WindowsLinux 1.2 IntelliJ安装Lua插件在线安装本地安装 2 Lua语法2.1 数据类型2.2 变量全局变量局部变量命名规范局部变量作用域 2.3 注释单行注释多行注释 2.4 赋值2.5 操作符数学操作符比较操作符逻辑操作符连接操作符取长度…...

网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...

C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

【JVM】- 内存结构
引言 JVM:Java Virtual Machine 定义:Java虚拟机,Java二进制字节码的运行环境好处: 一次编写,到处运行自动内存管理,垃圾回收的功能数组下标越界检查(会抛异常,不会覆盖到其他代码…...
Qt Http Server模块功能及架构
Qt Http Server 是 Qt 6.0 中引入的一个新模块,它提供了一个轻量级的 HTTP 服务器实现,主要用于构建基于 HTTP 的应用程序和服务。 功能介绍: 主要功能 HTTP服务器功能: 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)
参考官方文档:https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java(供 Kotlin 使用) 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...

中医有效性探讨
文章目录 西医是如何发展到以生物化学为药理基础的现代医学?传统医学奠基期(远古 - 17 世纪)近代医学转型期(17 世纪 - 19 世纪末)现代医学成熟期(20世纪至今) 中医的源远流长和一脉相承远古至…...

JVM虚拟机:内存结构、垃圾回收、性能优化
1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机
这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机,因为在使用过程中发现 Airsim 对外部监控相机的描述模糊,而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置,最后在源码示例中找到了,所以感…...