当前位置: 首页 > news >正文

【45 Pandas+Pyecharts | 去哪儿海南旅游攻略数据分析可视化】

文章目录

  • 🏳️‍🌈 1. 导入模块
  • 🏳️‍🌈 2. Pandas数据处理
    • 2.1 读取数据
    • 2.2 查看数据信息
    • 2.3 日期处理,提取年份、月份
    • 2.4 经费处理
    • 2.5 天数处理
  • 🏳️‍🌈 3. Pyecharts数据可视化
    • 3.1 出发日期_年份分布
    • 3.2 出发日期_月份分布
    • 3.3 出行天数分布
    • 3.4 旅游途经点分布
    • 3.5 出行团体占比
    • 3.6 人均消费区间占比
    • 3.7 出行类型标签统计
    • 3.8 旅游行程景点词云
  • 🏳️‍🌈 4. 可视化项目源码+数据

大家好,我是 👉【Python当打之年(点击跳转)】

本期利用 python 分析一下「去哪网海南旅游攻略数据」 ,看看海南哪些旅游景点最受大家喜爱,哪个时间段旅游的朋友比较多,最受大家欢迎的旅行方式有哪些,以及旅行目的 等,希望对大家有所帮助,如有疑问或者需要改进的地方可以联系小编。

涉及到的库:

  • Pandas — 数据处理
  • Pyecharts — 数据可视化

🏳️‍🌈 1. 导入模块

import pandas as pd
from pyecharts.charts import Line
from pyecharts.charts import Bar
from pyecharts.charts import Pie
from pyecharts.charts import Scatter
from pyecharts.charts import WordCloud
from pyecharts import options as opts
import warnings
warnings.filterwarnings('ignore')

🏳️‍🌈 2. Pandas数据处理

2.1 读取数据

df = pd.read_excel("./去哪网海南攻略数据.xlsx")

在这里插入图片描述

2.2 查看数据信息

df.info()

在这里插入图片描述

2.3 日期处理,提取年份、月份

df['出发日期_年'] = [int(i.split('-')[0]) for i in df['出发日期'].tolist()]
df['出发日期_月'] = [int(i.split('-')[1]) for i in df['出发日期'].tolist()]

在这里插入图片描述

2.4 经费处理

fee = [int(i.replace('人均','').replace('元','')) for i in df_fee['人均消费'].tolist()]
df_fee['人均消费'] = fee

在这里插入图片描述

2.5 天数处理

df['天数'] = df['天数'].str[1:-1]
df['天数'] = df['天数'].astype('int')

在这里插入图片描述

🏳️‍🌈 3. Pyecharts数据可视化

3.1 出发日期_年份分布

def get_chart1():chart = (Bar().add_xaxis(x_data).add_yaxis("", y_data).set_global_opts(title_opts=opts.TitleOpts(title="1-出发日期_年",pos_top='2%',pos_left="center",),legend_opts=opts.LegendOpts(is_show=False),xaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=False)),yaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=False)),visualmap_opts=opts.VisualMapOpts(is_show=False,),))return chart

在这里插入图片描述

  • 2014、2015、2016年的攻略数量相较于其他年份明显较多、2017-2021年趋于平稳。

  • 近三年时间大概由于时间比较近,加之疫情原因,所以攻略数量较少。

3.2 出发日期_月份分布

def get_chart2():chart = (Line().add_xaxis(x_data).add_yaxis("", y_data).set_global_opts(title_opts=opts.TitleOpts(title="2-每月攻略数量",pos_top='2%',pos_left="center",),visualmap_opts=opts.VisualMapOpts(is_show=False),legend_opts=opts.LegendOpts(is_show=False),))return chart

在这里插入图片描述

  • 1月、12月的攻略数比较高,大概占到了总数量的20%,反而6月、7月、8月的数量相对低一些。

3.3 出行天数分布

在这里插入图片描述

  • 从出行天数上来看,大多集中在一周(5天)左右,也有少量半个月、一个月的旅游时间。

3.4 旅游途经点分布

在这里插入图片描述

  • 首当其冲当然是三亚(1853)啦!远超排在第二的海口(182),基本是10倍之多,紧随其后的是陵水(108)、万宁(60)、文昌(46)等地。

3.5 出行团体占比

def get_chart3():chart = (Pie().add("", [list(z) for z in zip(x_data, y_data)]).set_global_opts(title_opts=opts.TitleOpts(title="5-出行团体占比",pos_top='2%',pos_left="center"),legend_opts=opts.LegendOpts(is_show=False),visualmap_opts=opts.VisualMapOpts(is_show=False,),).set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%")))return chart

  • 出行团体方面大多以好友(22%)、情侣(21%)和家庭(20%)团体居多。

3.6 人均消费区间占比

在这里插入图片描述

  • 人均消费3000-5000元居多,占比46%,1000-3000元占比28%。

3.7 出行类型标签统计

在这里插入图片描述

3.8 旅游行程景点词云

def get_chart4():chart = (WordCloud().add("",words,word_size_range=[10,50]).set_global_opts(title_opts=opts.TitleOpts(title='8-旅游行程景点词云',pos_top='2%',pos_left="center",),legend_opts=opts.LegendOpts(is_show=False),visualmap_opts=opts.VisualMapOpts(is_show=False),))return chart

在这里插入图片描述

  • 亚龙湾、三亚湾、蜈支洲岛、大东海、天涯海角、海棠湾等景点更受驴友的喜爱。

🏳️‍🌈 4. 可视化项目源码+数据

点击跳转:【全部可视化项目源码+数据】


以上就是本期为大家整理的全部内容了,赶快练习起来吧,原创不易,喜欢的朋友可以点赞、收藏也可以分享注明出处)让更多人知道。

相关文章:

【45 Pandas+Pyecharts | 去哪儿海南旅游攻略数据分析可视化】

文章目录 🏳️‍🌈 1. 导入模块🏳️‍🌈 2. Pandas数据处理2.1 读取数据2.2 查看数据信息2.3 日期处理,提取年份、月份2.4 经费处理2.5 天数处理 🏳️‍🌈 3. Pyecharts数据可视化3.1 出发日期_…...

Vue3项目给ElementPlus设置中文的两个方案

介绍 在Vue3项目将ElementPlus切换为中文 1、在App.vue的文件中修改 <template><el-config-provider :locale"zhCn"><router-view></router-view></el-config-provider> </template><script lang"ts" setup>im…...

C#开发单实例应用程序并响应后续进程启动参数

C#默认的WinForm模板是不支持设置单实例的&#xff0c;也没有隔壁大哥VB.NET那样有个“生成单个实例应用程序”的勾选选项&#xff08;VB某些时候要比C#更方便&#xff09;&#xff0c;实现单实例可以有多种方法&#xff1a; 检测同名进程&#xff1a;Process.GetProcessesByNa…...

STM32智能机器人导航系统教程

目录 引言环境准备智能机器人导航系统基础代码实现&#xff1a;实现智能机器人导航系统 4.1 数据采集模块 4.2 数据处理与导航算法 4.3 通信与网络系统实现 4.4 用户界面与数据可视化应用场景&#xff1a;机器人导航应用与优化问题解决方案与优化收尾与总结 1. 引言 智能机器…...

Android 15 适配之16K Page Size :为什么它会是最坑的一个适配点

首先什么是 Page Size &#xff1f;一般意义上&#xff0c;页面(Page)指的就是 Linux 虚拟内存管理中使用的最小数据单位&#xff0c;页面大小(Page Size)就是虚拟地址空间中的页面大小&#xff0c; Linux 中进程的虚拟地址空间是由固定大小的页面组成。 Page Size 对于虚拟内…...

下载linux的吐槽

本来这几天放假了&#xff0c;想下一个linux玩一玩 教程&#xff08;我就是根据这个教程进行下载的&#xff0c;但是呢在进行修改BIOS 模式的 地方遇见了困难&#xff0c;也许是电脑修过的原因&#xff0c;我狂按F12 以及 FnF12都没有BIOS设置&#xff0c;只有一个让我选择用w…...

【HTML入门】第四课 - 换行、分割横线和html的注释

这一小节&#xff0c;我们继续说HTML的入门知识&#xff0c;包括换行、横线分割以及注释&#xff08;html的注释&#xff09;。 目录 1 换行 2 分割横线 3 html注释 1 换行 html中分为块元素和行内元素。这一小节呢&#xff0c;先不说这些元素们&#xff0c;我们先说一下换…...

基于Hadoop平台的电信客服数据的处理与分析④项目实现:任务15:数据生产

任务描述 电信数据生产是一个完整且严密的体系&#xff0c;这样可以保证数据的鲁棒性。在本项目的数据生产模块中&#xff0c;我们来模拟生产一些电信数据。同时&#xff0c;我们必须清楚电信数据的格式和数据结构&#xff0c;这样才能在后续的数据产生、存储、分析和展示环节…...

Kotlin中的数据类型

人不走空 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌赋&#xff1a;斯是陋室&#xff0c;惟吾德馨 目录 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌…...

提高交易决策质量,Anzo Capital昂首资本只需两个交易策略

要想提高交易决策质量&#xff0c;其实很简单&#xff0c;Anzo Capital昂首资本只需两个交易策略&#xff0c;结合价格行为和VSA(成交量与价格分析)就可以达成我们的目的。首先&#xff0c;理解这两个概念&#xff1a; 1. 价格行为&#xff1a;价格行为是市场价格变动的方式&a…...

Ubuntu TensorRT安装

什么是TensorRT 一般的深度学习项目&#xff0c;训练时为了加快速度&#xff0c;会使用多 GPU 分布式训练。但在部署推理时&#xff0c;为了降低成本&#xff0c;往往使用单个 GPU 机器甚至嵌入式平台&#xff08;比如 NVIDIA Jetson&#xff09;进行部署&#xff0c;部署端也…...

spring mvc学习

第四章 Spring MVC 第一节 Spring MVC 简介 1. Spring MVC SpringMVC是一个Java 开源框架&#xff0c; 是Spring Framework生态中的一个独立模块&#xff0c;它基于 Spring 实现了Web MVC&#xff08;数据、业务与展现&#xff09;设计模式的请求驱动类型的轻量级Web框架&am…...

第4集《修习止观坐禅法要》

请打开讲义第七面&#xff0c;四、悟道。 我们前面讲到智者大师出家以后&#xff0c;他除了持戒以外&#xff0c;一方面拜忏&#xff0c;一方面就是打坐&#xff0c;来调伏他过去的烦恼跟罪业&#xff0c;以为他未来圆顿止观的一个基础&#xff0c;这以下讲到他开悟的情况&…...

IPython 日志的开关:精通 %logoff 命令的实用指南

IPython 日志的开关&#xff1a;精通 %logoff 命令的实用指南 在 IPython 的强大功能中&#xff0c;日志记录是一个不可或缺的工具&#xff0c;它帮助用户记录会话历史&#xff0c;以便日后分析和重现。%logoff 命令作为日志记录功能的补充&#xff0c;允许用户在需要时停止日…...

Redis 分布式集群方案 Cluster

引言 相比于Codis&#xff0c;Redis Cluster是Redis官方提供的解决方案。相比于Codis的不同&#xff0c;他是去中心化的&#xff0c;如图所示&#xff0c;该集群有三个Redis节点组成&#xff0c;每个节点负责整个集群的一部分数据&#xff0c;每个节点负责的数据多少可能不一样…...

Redis的两种持久化方案

Redis 提供了多种持久化机制来保证数据在发生意外情况下&#xff08;如断电或服务器崩溃&#xff09;不丢失。以下是几种主要的 Redis 持久化方案及其特点&#xff1a; 1. RDB (Redis Database Backup) RDB 是 Redis 创建的数据库快照&#xff0c;它可以将数据集快照以二进制…...

Spring中常见知识点及使用

Spring Framework 是 Java 生态系统中最流行的开源框架之一&#xff0c;它提供了一系列强大的功能&#xff0c;用于构建企业级应用。以下是一些常见的 Spring 知识点及其使用方法&#xff1a; 1. 依赖注入&#xff08;Dependency Injection&#xff09; 依赖注入是 Spring 的…...

Excel 宏录制与VBA编程 ——VBA编程技巧篇二 (合并内容相同连续单元格、取消合并单元格并在每个单元格中保留内容)

1、合并内容相同的连续单元格 如果需要合并如图所示的工作表中B列中部门相同的连续单元格 VBA代码&#xff1a; Sub Mergerng()Dim IntRow As IntegerDim i As IntegerApplication.DisplayAlerts FalseWith Sheet1IntRow .Range("A65536").End(xlUp).RowFor i In…...

理解和应用工业设备字典文件:一篇详细指南

理解和应用工业设备字典文件&#xff1a;一篇详细指南 在工业自动化领域&#xff0c;设备和模块的配置和管理是一个复杂而重要的任务。为了简化这个过程&#xff0c;字典文件被广泛应用于描述离线对象字典。本文将详细解释字典文件的用途、格式&#xff0c;并举例说明如何引用…...

Python酷库之旅-第三方库Pandas(010)

目录 一、用法精讲 22、pandas.read_hdf函数 22-1、语法 22-2、参数 22-3、功能 22-4、返回值 22-5、说明 22-6、用法 22-6-1、数据准备 22-6-2、代码示例 22-6-3、结果输出 23、pandas.HDFStore.put方法 23-1、语法 23-2、参数 23-3、功能 23-4、返回值 23-5…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15

缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下&#xff1a; struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向

在人工智能技术呈指数级发展的当下&#xff0c;大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性&#xff0c;吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型&#xff0c;成为释放其巨大潜力的关键所在&…...

第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10+pip3.10)

第一篇&#xff1a;Liunx环境下搭建PaddlePaddle 3.0基础环境&#xff08;Liunx Centos8.5安装Python3.10pip3.10&#xff09; 一&#xff1a;前言二&#xff1a;安装编译依赖二&#xff1a;安装Python3.10三&#xff1a;安装PIP3.10四&#xff1a;安装Paddlepaddle基础框架4.1…...

【Ftrace 专栏】Ftrace 参考博文

ftrace、perf、bcc、bpftrace、ply、simple_perf的使用Ftrace 基本用法Linux 利用 ftrace 分析内核调用如何利用ftrace精确跟踪特定进程调度信息使用 ftrace 进行追踪延迟Linux-培训笔记-ftracehttps://www.kernel.org/doc/html/v4.18/trace/events.htmlhttps://blog.csdn.net/…...

linux设备重启后时间与网络时间不同步怎么解决?

linux设备重启后时间与网络时间不同步怎么解决&#xff1f; 设备只要一重启&#xff0c;时间又错了/偏了&#xff0c;明明刚刚对时还是对的&#xff01; 这在物联网、嵌入式开发环境特别常见&#xff0c;尤其是开发板、树莓派、rk3588 这类设备。 解决方法&#xff1a; 加硬件…...

多模态学习路线(2)——DL基础系列

目录 前言 一、归一化 1. Layer Normalization (LN) 2. Batch Normalization (BN) 3. Instance Normalization (IN) 4. Group Normalization (GN) 5. Root Mean Square Normalization&#xff08;RMSNorm&#xff09; 二、激活函数 1. Sigmoid激活函数&#xff08;二分类&…...