python 10个自动化脚本
目录
🌟 引言
📚 理论基础
🛠️ 使用场景与代码示例
场景一:批量重命名文件
场景二:自动下载网页内容
场景三:数据清洗
场景四:定时执行任务
场景五:自动化邮件发送
场景六:自动化测试
场景七:数据库操作
场景八:日志分析
场景九:文件压缩
场景十:自动化文档生成
🎉 结语

🌟 引言
在程序员的世界里,自动化是提升效率的金钥匙。Python,以其易读性和强大的库支持,成为了实现自动化任务的首选语言。本文精选了10个实用的Python自动化脚本,涵盖文件处理、网络请求、数据分析等多个领域,旨在帮你节省时间,减少重复劳动,提升工作效能。
📚 理论基础
Python的自动化脚本主要依赖于标准库和第三方库,如os、requests、pandas等。通过这些库,我们可以轻松实现文件操作、数据抓取、数据分析等功能。
🛠️ 使用场景与代码示例
场景一:批量重命名文件
在处理大量媒体文件时,统一命名规则非常必要。
代码示例
import os
def batch_rename(directory, prefix):i = 1for filename in os.listdir(directory):ext = os.path.splitext(filename)[1]new_name = f"{prefix}_{i}{ext}"os.rename(os.path.join(directory, filename), os.path.join(directory, new_name))i += 1
batch_rename('/path/to/directory', 'file')
场景二:自动下载网页内容
对于研究者或数据分析师来说,自动抓取网络数据至关重要。
代码示例
import requests
def download_webpage(url, output_file):response = requests.get(url)with open(output_file, 'w') as file:file.write(response.text)
download_webpage('http://example.com', 'webpage.html')
场景三:数据清洗
数据预处理是数据分析的重要环节。
代码示例
import pandas as pd
def clean_data(file_path):df = pd.read_csv(file_path)df.dropna(inplace=True)df.to_csv(file_path, index=False)
clean_data('data.csv')
场景四:定时执行任务
确保任务在特定时间点执行,比如发送日报。
代码示例
import schedule
import time
def job():print("Task executed")
schedule.every().day.at("10:30").do(job)
while True:schedule.run_pending()time.sleep(1)
场景五:自动化邮件发送
自动发送报告,无需手动操作。
代码示例
import smtplib
from email.mime.text import MIMEText
def send_email(subject, message, to_email):msg = MIMEText(message)msg['Subject'] = subjectmsg['From'] = 'you@example.com'msg['To'] = to_emails = smtplib.SMTP('localhost')s.sendmail('you@example.com', [to_email], msg.as_string())s.quit()
send_email('Daily Report', 'Here is your daily report.', 'recipient@example.com')
场景六:自动化测试
确保代码质量,每次修改后都能自动测试。
代码示例
import unittest
class TestMyFunction(unittest.TestCase):def test_add(self):self.assertEqual(add(1, 2), 3)
if __name__ == '__main__':unittest.main()
场景七:数据库操作
自动化数据备份和恢复。
代码示例
import sqlite3
def backup_database(db_path, backup_path):conn = sqlite3.connect(db_path)backup_conn = sqlite3.connect(backup_path)conn.backup(backup_conn)backup_conn.close()conn.close()
backup_database('database.db', 'backup.db')
场景八:日志分析
从日志文件中提取关键信息。
代码示例
import re
def analyze_logs(log_file):pattern = r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}'with open(log_file, 'r') as file:for line in file:match = re.search(pattern, line)if match:print(match.group())
analyze_logs('access.log')
场景九:文件压缩
批量压缩文件,便于存储和传输。
代码示例
import zipfile
def compress_files(file_paths, zip_file):with zipfile.ZipFile(zip_file, 'w') as myzip:for file_path in file_paths:myzip.write(file_path)
compress_files(['file1.txt', 'file2.txt'], 'archive.zip')
场景十:自动化文档生成
根据数据自动生成报告。
代码示例
from docx import Document
def generate_report(data, report_file):doc = Document()doc.add_heading('Report', 0)doc.add_paragraph(str(data))doc.save(report_file)
generate_report('Sample data', 'report.docx')
🎉 结语
通过以上10个Python自动化脚本的实例,你可以看到Python在自动化领域的强大功能。无论是日常办公还是专业开发,Python都能帮助你节省时间和精力,让工作更加高效和愉快。希望你能将这些脚本融入自己的工作流程中,享受自动化带来的便利!
如果你对某个脚本特别感兴趣,或者有更多自动化需求,欢迎留言交流。让我们一起探索Python自动化世界的无限可能!🚀
请确保在运行上述代码前,已安装所有必需的Python库,如requests, pandas, schedule, unittest, sqlite3, re, zipfile, 和 docx。如果在实际应用中遇到困难,不要犹豫,随时提问,让我们一起成长!

相关文章:
python 10个自动化脚本
目录 🌟 引言 📚 理论基础 🛠️ 使用场景与代码示例 场景一:批量重命名文件 场景二:自动下载网页内容 场景三:数据清洗 场景四:定时执行任务 场景五:自动化邮件发送 场景六…...
填报高考志愿,怎样正确地选择大学专业?
大学专业的选择,会关系到未来几年甚至一辈子的发展方向。这也是为什么很多人结束高考之后就开始愁眉苦脸,因为他们不知道应该如何选择大学专业,生怕一个错误的决定会影响自己一生。 毋庸置疑,在面对这种选择的时候,我…...
Java 使用sql查询mongodb
在现代应用开发中,关系型数据库和NoSQL数据库各有千秋。MongoDB作为一种流行的NoSQL数据库,以其灵活的文档模型和强大的扩展能力,受到广泛欢迎。然而,有时开发者可能更熟悉SQL查询语法,或者需要在现有系统中复用SQL查询…...
WIN32核心编程 - 线程操作(二) 同步互斥
公开视频 -> 链接点击跳转公开课程博客首页 -> 链接点击跳转博客主页 目录 竞态条件 CriticalSection Mutex CriticalSection & Mutex Semaphore Event 竞态条件 多线程环境下,当多个线程同时访问或者修改同一个数据时,最终结果为线程执…...
web自动化(六)unittest 四大组件实战(京东登录搜索加入购物车)
Unittest框架 Unittest框架:框架测试模块测试管理模块测试统计模块,python的内置模块 import unittest Unittest框架四大组件: 1、TestCase 测试用例 2.TestFixture 测试用例夹具 测试用例需要执行的前置和后置 3.TestSuite 测试套件 把需要执行的测试用例汇总在一…...
鸿蒙语言基础类库:【@ohos.process (获取进程相关的信息)】
获取进程相关的信息 说明: 本模块首批接口从API version 7开始支持。后续版本的新增接口,采用上角标单独标记接口的起始版本。开发前请熟悉鸿蒙开发指导文档:gitee.com/li-shizhen-skin/harmony-os/blob/master/README.md点击或者复制转到。…...
华为笔试题
文章目录 1、数的分解2、字符串判断子串 1、数的分解 给定一个正整数n,如果能够分解为m(m > 1)个连续正整数之和, 请输出所有分解中,m最小的分解。 如果给定整数无法分解为连续正整数,则输出字符串"N"。 输入描述&a…...
【MySQL基础篇】函数及约束
1、函数 函数是指一段可以直接被另一段程序程序调用的程序或代码。 函数 - 字符串函数 MySQL中内置了很多字符串函数,常用的几个如下: 函数功能CONCAT(S1,S2,...,Sn)字符串拼接,将S1,S2,...,Sn拼接成一个字符串LOWER(str)将字符串str全部…...
YOLOv9报错:AttributeError: ‘list‘ object has no attribute ‘view‘
报错信息如下: red_distri, pred_scores torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split( AttributeError: ‘list’ object has no attribute ‘view’ 解决方法: 去yolov9/utils/loss_tal.py把167行代码更改&#…...
Bert入门-使用BERT(transformers库)对推特灾难文本二分类
Kaggle入门竞赛-对推特灾难文本二分类 这个是二月份学习的,最近整理资料所以上传到博客备份一下 数据在这里:https://www.kaggle.com/competitions/nlp-getting-started/data github(jupyter notebook):https://gith…...
【DFS(深度优先搜索)详解】看这一篇就够啦
【DFS详解】看这一篇就够啦 🍃1. 算法思想🍃2. 三种枚举方式🍃2.1 指数型枚举🍃2.2 排列型枚举🍃2.3 组合型枚举 🍃3. 剪枝优化🍃4. 图的搜索🍃5. 来几道题试试手🍃5.1 选…...
java-spring boot光速入门教程(超详细!!)
目录 一、引言 1.1 初始化配置 1.2 整合第三方框架 1.3 后期维护 1.4 部署工程 1.5 敏捷式开发 二、SpringBoot介绍 spring boot 2.1 搭建一个spring boot工程 2.2 使用idea创建项目 2.3 在线创建姿势 2.4 项目的目录结构 2.5 项目的运行方式 2.6 yml文件格式 2…...
一、Prometheus和Grafana搭建
一、服务端Prometheus二进制安装 https://prometheus.io/下载过慢可使用迅雷下载 tar -zxvf prometheus-2.53.0.linux-amd64.tar.gz启动 ./prometheus --config.fileprometheus.yml将其配置为系统服务: vim /usr/lib/systemd/system/prometheus.service[Unit] D…...
从零开始的python学习生活
pycharm部分好用快捷键 变量名的定义 与之前学习过的语言有所不同的是,python中变量名的定义更加的简洁 such as 整形。浮点型和字符串的定义 money50 haha13.14 gaga"hello"字符串的定义依然是需要加上引号,也不需要写;了 字符…...
MSP学习
一、迁移资源调研 完成导入,类似完成选型分析 离线工具调研 账单 二、迁移计划 1、 ecs 确认开始构建迁移环境后,平台将锁定当前标记的迁移资源范围及源端、目标端资源配置信息,并以此为迁移环境构建及迁移实施的数据依据 目标账号…...
生产力工具|Endnote X9如何自动更新文件信息
一、以EndNote X9.2版本为例,打开EndNote文献管理软件。 二、在菜单栏找到“Edit→Preferences...”,点击打开,弹出一个“EndNote Preferences”窗口。 三、进行设置 在打开的窗口左侧选择“PDF Handing”,右边会出现自动导入文献…...
【python】字典、列表、集合综合练习
1、练习1(字典) 字典dic,dic {‘k1’:‘v1’, ‘k2’: ‘v2’, ‘k3’: [11,22,33]} (1). 请循环输出所有的key dic {"k1": "v1", "k2": "v2", "k3": [11, 22, 33]} for k in dic.keys():print(k)k1 k2 k3(2). 请循环输…...
超融合服务器挂载硬盘--linux系统
项目中需要增加服务器的硬盘容量,通过超融合挂载了硬盘后,还需要添加到指定的路径下,这里记录一下操作步骤。 一:通过管理界面挂载硬盘 这一步都是界面操作,登录超融合控制云台后,找到对应的服务器&#…...
Kafka如何防止消息重复发送
Kafka 提供了几种方式来防止消息重复发送和处理。这些方式通常取决于生产者和消费者的设置和实现方式: 生产者端幂等性(什么是幂等性): 幂等性生产者:从 Kafka 0.11 版本开始引入了生产者端的幂等性支持。生产者可以通…...
数据库设计原则介绍
数据库设计是一个重要的过程,它涉及到创建一个逻辑结构来存储和管理数据。良好的数据库设计可以确保数据的完整性、一致性、性能和安全性。以下是一些关键的数据库设计原则: 1. 数据规范化 (Normalization) 目的:减少数据冗余、提高数据一致…...
Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...
前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
Spring Boot面试题精选汇总
🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...
DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...
UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
C#中的CLR属性、依赖属性与附加属性
CLR属性的主要特征 封装性: 隐藏字段的实现细节 提供对字段的受控访问 访问控制: 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性: 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑: 可以…...
篇章二 论坛系统——系统设计
目录 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 1. 数据库设计 1.1 数据库名: forum db 1.2 表的设计 1.3 编写SQL 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 通过需求分析获得概念类并结合业务实现过程中的技术需要&#x…...
