数据库设计原则介绍
数据库设计是一个重要的过程,它涉及到创建一个逻辑结构来存储和管理数据。良好的数据库设计可以确保数据的完整性、一致性、性能和安全性。以下是一些关键的数据库设计原则:
1. 数据规范化 (Normalization)
- 目的:减少数据冗余、提高数据一致性。
- 实施:按照规范化的级别(如第一范式、第二范式、第三范式等)组织数据,以分离数据到不同的表中,并定义表间关系。
2. 使用适当的数据类型 (Appropriate Data Types)
- 目的:确保数据准确性和最优存储。
- 实施:为每一个字段选择最合适的数据类型,考虑到数据的大小、范围和精度。
3. 数据完整性 (Data Integrity)
- 目的:保证数据的准确性和可靠性。
- 实施:使用主键、外键、唯一约束、检查约束等数据库约束来维护数据的正确性和关系。
4. 避免过度使用NULL值 (Avoid Excessive Use of NULLs)
- 目的:提高查询性能,减少复杂性。
- 实施:尽可能避免使用NULL值,因为它们可以增加逻辑复杂性,并且某些数据库系统在处理NULL时性能较差。
5. 使用索引优化查询 (Use Indexes for Optimization)
- 目的:提高查询速度和性能。
- 实施:为经常用于检索的列创建索引,特别是在大型数据库中。但要注意过度索引可能会影响写操作的性能。
6. 事务管理 (Transaction Management)
- 目的:确保数据的一致性和完整性。
- 实施:使用事务来管理数据的创建、更新、删除操作,确保操作的原子性、一致性、隔离性和持久性(ACID属性)。
7. 数据安全性 (Data Security)
- 目的:保护数据不受未授权访问和篡改。
- 实施:实施认证和授权机制,加密敏感数据,使用视图和存储过程来限制对数据的直接访问。
8. 考虑未来的扩展性 (Consider Future Scalability)
- 目的:设计一个能够适应数据增长的系统。
- 实施:在设计时考虑到未来数据量的增加,确保系统可以平滑地扩展。
9. 数据库文档化 (Database Documentation)
- 目的:提供数据库结构和行为的详细信息。
- 实施:创建数据字典和元数据描述,记录表结构、关系、约束、索引、触发器和存储过程等。
10. 避免业务逻辑在数据库中 (Avoid Business Logic in the Database)
- 目的:保持数据库层的简单性,便于维护和迁移。
- 实施:尽量将复杂的业务逻辑保留在应用层,数据库层仅做数据存储和简单的数据处理。
良好的数据库设计是确保数据管理系统成功的关键。通过遵守这些设计原则,可以创建出一个高效、可靠和可维护的数据库结构。在实际的工作中,设计者还需要根据具体的业务需求、性能要求和预算等因素来权衡这些原则的应用。
案例
当然,让我们来设计一个稍复杂的数据库案例:一个在线图书商店。这个在线图书商店不仅销售书籍,还允许用户对购买的书籍进行评价。
需求分析
- 商店需要管理不同类型的书籍。
- 每本书有标题、描述、作者、价格、库存数量等信息。
- 书籍可以被分为不同的分类,如小说、非小说、教育、科技等。
- 用户可以在平台上注册、登录、浏览书籍、添加到购物车、下订单。
- 用户可以对购买过的书籍进行评分和评论。
初步设计
基于上述需求,可以设计以下实体和它们之间的关系:
实体
- Books: 包含所有书籍的详细信息。
- Authors: 包含作者的信息,因为一本书可能有多个作者。
- Categories: 书籍的分类。
- Users: 注册用户的信息。
- Orders: 用户的订单信息。
- OrderDetails: 订单中的具体书籍和数量。
- Reviews: 用户对书籍的评分和评论。
关系
- 书籍和作者是多对多的关系(一本书可以有多个作者,一个作者可以写多本书)。
- 书籍和分类是多对一的关系(一本书属于一个分类,一个分类可以包含多本书)。
- 用户和订单是一对多的关系(一个用户可以有多个订单)。
- 订单和书籍是多对多的关系,通过OrderDetails实体解决。
- 用户和书籍是多对多的关系,通过Reviews实体解决。
至此读者可以自己尝试设计一下…
数据库设计
基于上述分析,我们可以创建以下表格:
-
Books
- BookID (PK)
- Title
- Description
- Price
- StockQuantity
- CategoryID (FK)
-
Authors
- AuthorID (PK)
- Name
- Bio
-
BookAuthors
- BookID (FK)
- AuthorID (FK)
-
Categories
- CategoryID (PK)
- Name
- Description
-
Users
- UserID (PK)
- Username
- Password
- RegistrationDate
-
Orders
- OrderID (PK)
- UserID (FK)
- OrderDate
- TotalAmount
-
OrderDetails
- OrderDetailID (PK)
- OrderID (FK)
- BookID (FK)
- Quantity
- Price
-
Reviews
- ReviewID (PK)
- UserID (FK)
- BookID (FK)
- Rating
- Comment
- ReviewDate
规范化
在这个模型中,我们已经将数据规范化以减少冗余:
- 分离了书籍和作者,以解决多对多关系。
- 创建了OrderDetails表来处理订单和书籍之间的多对多关系。
- 通过Reviews表允许用户对书籍进行评价。
索引和约束
- 在每个表的主键上自动创建索引。
- 在外键上创建索引以加速连接操作。
- 在Books表的Title、Categories表的Name和Users表的Username上创建索引,因为它们是常用的搜索条件。
- 在OrderDetails的OrderID和BookID上创建索引以优化订单查询。
- 使用NOT NULL约束确保关键字段被填充。
- 使用唯一约束防止重复数据,如用户名或电子邮件地址。
安全和权限
- 密码字段应该存储加密哈希值,而不是明文。
- 对敏感信息使用加密,特别是在传输过程中。
- 使用角色和权限来控制对数据的访问。
这个案例展示了一个基本的在线图书商店的数据库设计,它考虑到了规范化的数据结构、索引优化、安全性和扩展性。让我们继续深入探讨其他方面,包括查询性能、扩展性和备份策略。
查询性能
- 预计算字段:对于频繁查询但不常更新的数据(如书籍的平均评分),可以在Books表中添加一个预计算字段,定期更新这个字段以提高查询效率。
- 分页和索引:为了提高用户浏览书籍列表的性能,实现分页查询,并确保对分页字段(如Title或CategoryID)进行索引。
- 查询优化:对于复杂的查询,如联合多表查询用户的历史订单,考虑使用视图或存储过程,并确保适当索引。
扩展性
- 垂直分割:随着数据量的增长,考虑对数据库进行垂直分割,分离出事务性和分析性工作负载。例如,将实时订单处理系统与用户行为分析系统分离。
- 水平分割(分区):对于如Orders和OrderDetails这样的大表,可以根据时间或其他逻辑进行分区,以提高性能和管理效率。
- 读写分离:在高负载情况下,将读操作分离到从数据库,以减轻主数据库的压力。
备份策略
- 定期备份:实现定期的全量备份和增量备份,确保数据的安全。
- 热备份:对于需要24/7运行的在线商店,考虑实施热备份策略,以便在不中断服务的情况下备份数据。
- 灾难恢复:制定和测试灾难恢复计划,确保在数据丢失或损坏的情况下可以迅速恢复服务。
数据库维护
- 性能监控:定期监控数据库性能,识别潜在的瓶颈,如缓慢的查询或索引失效。
- 数据清理:对于过时或不再需要的数据,如旧的订单历史,实施数据清理和归档策略,以保持数据库的高效运行。
- 数据库升级:定期评估和升级数据库软件,以利用新版本提供的性能改进和安全补丁。
以上是对在线图书商店数据库设计的深入探讨,包括性能优化、可扩展性设计和维护策略。良好的数据库设计需要不断评估和调整,以满足不断变化的业务需求和技术环境。
相关文章:
数据库设计原则介绍
数据库设计是一个重要的过程,它涉及到创建一个逻辑结构来存储和管理数据。良好的数据库设计可以确保数据的完整性、一致性、性能和安全性。以下是一些关键的数据库设计原则: 1. 数据规范化 (Normalization) 目的:减少数据冗余、提高数据一致…...
反馈神经网络与不同类型的神经网络:BP神经网络,深度感知机,CNN,LSTM
反馈神经网络与不同类型的神经网络:BP神经网络,深度感知机,CNN,LSTM 在神经网络的研究和应用中,我们经常听到BP神经网络、深度感知机(MLP)、卷积神经网络(CNN)、长短期记…...
轮播图案例
丐版轮播图 <!DOCTYPE html> <html lang"zh-cn"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title> 基础轮播图 banner 移入移出</t…...
Spring 泛型依赖注入
Spring 泛型依赖注入,是利用泛型的优点对代码时行精简,将可重复使用的代码全部放到一个类之中,方便以后的维护和修改,同时在不增加代码的情况下增加代码的复用性。 示例代码: 创建实体类 Product package test.spri…...
C++ Linux调试(无IDE)
跨平台IDE编译调试C很方便,如QTCreate 、VSCode、Eclipse等,但是如果只能使用Shell控制台呢,gdb调试的优势就很明显了,在没有IDE的情况下,这个方式最有效。因为上手不是很难,特此整理 参考链接 目录 1、G…...
FFmpeg——视频拼接总结
最近需要做一个关于视频拼接的内容,需要将两个视频合成一个视频,使用opencv的话需要将视频读上来然后再写到文件了,这个会很消耗时间也没有必要。两个视频的编码格式是一样的,并不需要转码操作所以想法是直接将视频流补到后面&…...
springboot项目怎么样排除自带tomcat容器使用宝蓝德bes web中间件?
前言: 由于Spring Boot 1.x和2.x不兼容,BES提供了对应的Spring Boot Starter版本。 bes‑lite‑spring‑boot‑1.x‑starter.jar,适用于Spring Boot 1.x的版本。 bes‑lite‑spring‑boot‑2.x‑starter…...
响应式ref()和reactive()
文章目录 ref()reactive()ref对比reactivetoRefs与toRef ref() 作用:定义响应式变量。 语法:let xxxref(初始值)。 返回值:一个RefImpl的实例对象,简称ref对象或ref,ref对象的value属性是响应式的 注意点࿱…...
运维系列.Nginx中使用HTTP压缩功能
运维专题 Nginx中使用HTTP压缩功能 - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite:http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddress of this article:https://blog.csdn.net/qq_28550…...
vue3项目图片压缩+rem+自动重启等plugin使用与打包配置
一、Svg配置 每次引入一张 SVG 图片都需要写一次相对路径,并且对 SVG 图片进行压缩优化也不够方便。 vite-svg-loader插件加载SVG文件作为Vue组件,使用SVGO进行优化。 插件网站https://www.npmjs.com/package/vite-svg-loader 1. 安装 pnpm i vite-svg…...
数据库性能优化系统设计
设计一个数据库性能优化系统,目标是监测、诊断并改善数据库的运行效率,确保系统能够高效稳定地处理大量数据请求。以下是一个概要设计,包括关键模块、功能和实现思路: 1. 系统架构 分布式监控中心:采用分布式架构收集…...
MyBatisPlus-分页插件的基本使用
目录 配置插件 使用分页API 配置插件 首先,要在配置类中注册MyBatisPlus的核心插件,同时添加分页插件。(可以放到config软件包下) 可以看到,我们定义了一个配置类,在配置类里声明了一个Bean,这个Bean的名…...
深入探索Python库的奇妙世界:赋能编程的无限可能
在编程的浩瀚宇宙中,Python以其简洁的语法、强大的功能和广泛的应用领域,成为了众多开发者心中的璀璨明星。而Python之所以能够如此耀眼,很大程度上得益于其背后庞大的库生态系统。这些库,如同一块块精心雕琢的积木,让…...
力扣爆刷第161天之TOP100五连刷71-75(搜索二叉树、二维矩阵、路径总和)
力扣爆刷第161天之TOP100五连刷71-75(搜索二叉树、二维矩阵、路径总和) 文章目录 力扣爆刷第161天之TOP100五连刷71-75(搜索二叉树、二维矩阵、路径总和)一、98. 验证二叉搜索树二、394. 字符串解码三、34. 在排序数组中查找元素的…...
你真的了解Java内存模型JMM吗?
哈喽,大家好🎉,我是世杰。 本文我为大家介绍面试官经常考察的**「Java内存模型JMM相关内容」** 面试连环call 什么是Java内存模型(JMM)? 为什么需要JMM?Java线程的工作内存和主内存各自的作用?Java缓存一致性问题?Java的并发编程问题? …...
Springboot整合Jsch-Sftp
背景 开发一个基于jsch的sftp工具类,方便在以后的项目中使用。写代码的过程记录下来,作为备忘录。。。 Maven依赖 springboot依赖 <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-par…...
生成随机的验证码图片(Python)
文章目录 一、导入包二、生成随机的验证码三、生成随机的rgb颜色四、生成图片验证码总结: 一、导入包 import random from PIL import Image, ImageDraw, ImageFont二、生成随机的验证码 def random_code(length4):默认返回4位随机验证码,字符串code …...
0/1背包问题总结
文章目录 🍇什么是0/1背包问题?🍈例题🍉1.分割等和子集🍉2.目标和🍉3.最后一块石头的重量Ⅱ 🍊总结 博客主页:lyyyyrics 🍇什么是0/1背包问题? 0/1背包问题是…...
模电基础 - 放大电路的频率响应
目录 一. 简介 二. 频率响应的基本概念 三. 波特图 四. 晶体管的高频等效模型 五. 场效应管的高频等效模型 六. 单管放大电路的频率响应 七.多级放大电路的频率响应 八. 频率响应与阶跃响应 一. 简介 放大电路的频率响应是指在输入不同频率的正弦信号时,电路…...
Java 8 到 Java 22 新特性详解
Java 8 到 Java 22 新特性详解 Java自发布以来一直在不断演进,添加新特性以提升开发效率和性能。本文将介绍Java 8到Java 22的主要新特性,帮助开发者了解各版本的新功能和改进。 Java 8 (2014) 1. Lambda 表达式 Lambda 表达式允许使用简洁的语法定义…...
为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...
Cinnamon修改面板小工具图标
Cinnamon开始菜单-CSDN博客 设置模块都是做好的,比GNOME简单得多! 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)
宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...
微信小程序云开发平台MySQL的连接方式
注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
重启Eureka集群中的节点,对已经注册的服务有什么影响
先看答案,如果正确地操作,重启Eureka集群中的节点,对已经注册的服务影响非常小,甚至可以做到无感知。 但如果操作不当,可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...
JVM 内存结构 详解
内存结构 运行时数据区: Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器: 线程私有,程序控制流的指示器,分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 每个线程都有一个程序计数…...
PostgreSQL——环境搭建
一、Linux # 安装 PostgreSQL 15 仓库 sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm# 安装之前先确认是否已经存在PostgreSQL rpm -qa | grep postgres# 如果存在࿰…...
【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)
LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 题目描述解题思路Java代码 题目描述 题目链接:LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...
