当前位置: 首页 > news >正文

VS code修改底部的行号的状态栏颜色

VSCode截图
在这里插入图片描述

相信很多小伙伴被底部的蓝色状态栏困扰很久了
处理的方式有两种:
1、隐藏状态栏
2、修改其背景颜色
第一种方法大伙都会,今天就使用第二种方法。
1、点击齿轮进入setting
2、我现在用的新版本,设置不是以前那种json格式展示,可以先搜索“workbench.colorCustomizations”
3、在结果处点击Edit in setting.json
4、输入以下json,当然你也可以定制自己喜欢的颜色
“workbench.colorCustomizations”: {
“statusBar.background” : “#1A1A1A”,
“statusBar.noFolderBackground” : “#0A0A0D”,
“statusBar.debuggingBackground”: “#511f1f”
}
• 1
• 2
• 3
• 4
• 5
在这里插入图片描述
在这里插入图片描述

原文:https://www.jianshu.com/p/b32a8731e55f

相关文章:

VS code修改底部的行号的状态栏颜色

VSCode截图 相信很多小伙伴被底部的蓝色状态栏困扰很久了 处理的方式有两种: 1、隐藏状态栏 2、修改其背景颜色 第一种方法大伙都会,今天就使用第二种方法。 1、点击齿轮进入setting 2、我现在用的新版本,设置不是以前那种json格式展示&…...

【鸿蒙学习笔记】MVVM模式

官方文档:MVVM模式 [Q&A] 什么是MVVM ArkUI采取MVVM Model View ViewModel模式。 Model层:存储数据和相关逻辑的模型。View层:在ArkUI中通常是Component装饰组件渲染的UI。ViewModel层:在ArkUI中,ViewModel是…...

端、边、云三级算力网络

目录 端、边、云三级算力网络 NPU Arm架构 OpenStack kubernetes k3s轻量级Kubernetes kubernetes和docker区别 DCI(Data Center Interconnect) SD/WAN TF 端、边、云三级算力网络 算力网络从传统云网融合的角度出发,结合 边缘计算、网络云化以及智能控制的优势,通…...

java —— JSP 技术

一、JSP &#xff08;一&#xff09;前言 1、.jsp 与 .html 一样属于前端内容&#xff0c;创建在 WebContent 之下&#xff1b; 2、嵌套的 java 语句放置在<% %>里面&#xff1b; 3、嵌套 java 语句的三种语法&#xff1a; ① 脚本&#xff1a;<% java 代码 %>…...

【Python学习笔记】菜鸟教程Scrapy案例 + B站amazon案例视频

背景前摇&#xff08;省流可以跳过这部分&#xff09; 实习的时候厚脸皮请教了一位办公室负责做爬虫这块的老师&#xff0c;给我推荐了Scrapy框架。 我之前学过一些爬虫基础&#xff0c;但是用的是比较常见的BeautifulSoup和Request&#xff0c;于是得到Scrapy这个关键词后&am…...

Pycharm的终端(Terminal)中切换到当前项目所在的虚拟环境

1.在Pycharm最下端点击终端/Terminal, 2.点击终端窗口最上端最右边的∨&#xff0c; 3.点击Command Prompt&#xff0c;切换环境&#xff0c; 可以看到现在环境已经由默认的PS(Window PowerShell)切换为项目所使用的虚拟环境。 4.更近一步&#xff0c;如果想让Pycharm默认显示…...

Nginx 高效加速策略:动静分离与缓存详解

在现代Web开发中&#xff0c;网站性能是衡量用户体验的关键指标之一。Nginx&#xff0c;以其出色的性能和灵活性&#xff0c;成为众多网站架构中不可或缺的一部分。本文将深度解析如何利用Nginx实现动静分离与缓存&#xff0c;从而大幅提升网站加载速度和响应效率。 理解动静分…...

Unity3D 游戏摇杆的制作与实现详解

在Unity3D游戏开发中&#xff0c;摇杆是一种非常常见的输入方式&#xff0c;特别适用于移动设备的游戏控制。本文将详细介绍如何在Unity3D中制作和实现一个虚拟摇杆&#xff0c;包括技术详解和代码实现。 对惹&#xff0c;这里有一个游戏开发交流小组&#xff0c;大家可以点击…...

从nginx返回404来看http1.0和http1.1的区别

序言 什么样的人可以称之为有智慧的人呢&#xff1f;如果下一个定义&#xff0c;你会如何来定义&#xff1f; 所谓智慧&#xff0c;就是能区分自己能改变的部分&#xff0c;自己无法改变的部分&#xff0c;努力去做自己能改变的&#xff0c;而不要天天想着那些无法改变的东西&a…...

MySQL 代理层:ProxySQL

文章目录 说明安装部署1.1 yum 安装1.2 启停管理1.3 查询版本1.4 Admin 管理接口 入门体验功能介绍3.1 多层次配置系统 读写分离将实例接入到代理服务定义主机组之间的复制关系配置路由规则事务读的配置延迟阈值和请求转发 ProxySQL 核心表mysql_usersmysql_serversmysql_repli…...

异步主从复制

主从复制的概念 主从复制是一种在数据库系统中常用的数据备份和读取扩展技术&#xff0c;通过将一个数据库服务器&#xff08;主服务器&#xff09;上的数据变更自动同步到一个或多个数据库服务器&#xff08;从服务器&#xff09;上&#xff0c;以此来实现数据的冗余备份、读…...

论文解析——Full Stack Optimization of Transformer Inference: a Survey

作者及发刊详情 摘要 正文 主要工作贡献 这篇文章的贡献主要有两部分&#xff1a; 分析Transformer的特征&#xff0c;调查高效transformer推理的方法通过应用方法学展现一个DNN加速器生成器Gemmini的case研究 1&#xff09;分析和解析Transformer架构的运行时特性和瓶颈…...

selenium处理cookie问题实战

1. cookie获取不完整 需要进入的资损平台(web)首页&#xff0c;才会出现有效的ctoken等信息 1.1. 原因说明 未进入指定页面而获取的 cookie 与进入页面后获取的 cookie 可能会有一些差异&#xff0c;这取决于网站的具体实现和 cookie 的设置方式。 通常情况下&#xff0c;一些…...

(十五)GLM库对矩阵操作

GLM简单使用 glm是一个开源的对矩阵运算的库&#xff0c;下载地址&#xff1a; https://github.com/g-truc/glm/releases 直接包含其头文件即可使用&#xff1a; #include <glad/glad.h>//glad必须在glfw头文件之前包含 #include <GLFW/glfw3.h> #include <io…...

android中activity与fragment之间的各种跳转

我们以音乐播放、视频播放、用户注册与登录为例【Musicfragment&#xff08;音乐列表页&#xff09;、Videofragment&#xff08;视频列表页&#xff09;、MusicAvtivity&#xff08;音乐详情页&#xff09;、VideoFragment&#xff08;视频详情页&#xff09;、LoginActivity&…...

动态规划算法-以中学排课管理系统为例

1.动态规划算法介绍 1.算法思路 动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中&#xff0c;可能会有许多可行解。每一个解都对应于一个值&#xff0c;我们希望找到具有最优值的解。动态规划算法与分治法类似&#xff0c;其基本思想也是将待求解问题分解成若…...

本安防爆手机:危险环境下的安全通信解决方案

在石油化工、煤矿、天然气等危险环境中&#xff0c;通信安全是保障工作人员生命安全和生产顺利进行的关键。防爆智能手机作为专为这些环境设计的通信工具&#xff0c;提供了全方位的安全通信解决方案。 防爆设计与材料&#xff1a; 防爆智能手机采用特殊的防爆结构和材料&…...

算法学习笔记(8)-动态规划基础篇

目录 基础内容&#xff1a; 动态规划&#xff1a; 动态规划理解的问题引入&#xff1a; 解析&#xff1a;&#xff08;暴力回溯&#xff09; 代码示例&#xff1a; 暴力搜索&#xff1a; Dfs代码示例&#xff1a;&#xff08;搜索&#xff09; 暴力递归产生的递归树&…...

数据库常见问题(持续更新)

数据库常见问题(持续更新) 1、数据库范式&#xff1f; 1NF&#xff1a;不可分割2NF&#xff1a;没有非主属性对候选码存在部分依赖3NF&#xff1a;没有非主属性传递依赖候选码BCNF&#xff1a;消除了主属性对对候选码的传递依赖或部分依赖 2、InnoDB事务的实现&#xff1f; …...

定个小目标之刷LeetCode热题(40)

94. 二叉树的中序遍历 给定一个二叉树的根节点 root &#xff0c;返回 它的 中序 遍历 。 直接上代码吧&#xff0c;中序遍历左根右 class Solution {public List<Integer> inorderTraversal(TreeNode root) {List<Integer> res new ArrayList<Integer>(…...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇&#xff0c;在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下&#xff1a; 【Note】&#xff1a;如果你已经完成安装等操作&#xff0c;可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作&#xff0c;重…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展&#xff1a;显示创建时间8. 功能扩展&#xff1a;记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

什么是EULA和DPA

文章目录 EULA&#xff08;End User License Agreement&#xff09;DPA&#xff08;Data Protection Agreement&#xff09;一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA&#xff08;End User License Agreement&#xff09; 定义&#xff1a; EULA即…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

Caliper 配置文件解析:config.yaml

Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

网络编程(UDP编程)

思维导图 UDP基础编程&#xff08;单播&#xff09; 1.流程图 服务器&#xff1a;短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...

初探Service服务发现机制

1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能&#xff1a;服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源&#xf…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...