CV每日论文--2024.7.8
1、DisCo-Diff: Enhancing Continuous Diffusion Models with Discrete Latents
中文标题:DisCo-Diff:利用离散潜伏增强连续扩散模型


简介:这篇文章提出了一种新型的离散-连续潜变量扩散模型(DisCo-Diff),旨在改善传统扩散模型(DMs)存在的问题。
传统的DMs将复杂的、可能是多峰的数据分布编码为单一的连续高斯分布,这可能是一个不必要的困难学习问题。为了简化这个问题,DisCo-Diff引入了互补的离散潜变量。
具体来说,DisCo-Diff使用可学习的离散潜变量来扩充DMs,这些变量由编码器推断,并对DM和编码器进行端到端的训练。离散潜变量通过减少DM生成ODE的曲率,显著简化了学习DM的复杂噪声-数据映射。同时,一个自回归变换器模型用于离散潜变量的分布,这是一个相对简单的步骤,因为DisCo-Diff只需要少量离散变量和小型码本。
实验结果表明,在玩具数据、图像合成任务以及分子对接等方面,DisCo-Diff都能显著提高模型性能。比如在ImageNet-64/128数据集上,DisCo-Diff在ODE采样器上实现了最先进的FID分数。
总之,DisCo-Diff通过引入离散潜变量,有效地简化了DMs的学习问题,展现了良好的效果和广泛的应用前景。
2、Biomechanics-informed Non-rigid Medical Image Registration and its Inverse Material Property Estimation with Linear and Nonlinear Elasticity
中文标题:基于生物力学的非刚性医学图像配准及其线性和非线性弹性逆材料特性估计


简介:这篇论文使用物理知识引导神经网络(PINNs)来解决两个关键问题:非刚性医学图像配准和软组织材料属性的准确识别。
首先,作者正式建立了表示生物力学约束物理定律的偏微分方程(PDEs),将配准任务视为前向问题(即PDE的数据驱动解决方案),将识别任务视为反向问题(即参数估计)。在PINNs框架下,作者比较了两种不同的网络配置(Cfg1和Cfg2)在线性和非线性物理模型下的表现。
在实验部分,作者使用前列腺癌活检的未变形和变形MR图像对进行了两组实验。主要贡献如下:
1. 开发了一种基于PINNs的生物力学约束非刚性配准算法,将线性弹性推广到非线性版本。
2. 发现非线性弹性模型在计算点位位移向量方面与线性模型没有统计学意义差异,但二者的优势可能取决于特定患者及有限元(FE)计算的基础真实值。
3. 利用PINNs提出并解决了反向参数估计问题,在配准和参数识别的联合优化方案下,其解可以通过定位鞍点来准确找到。
总之,这项工作展示了PINNs在处理生物力学约束非刚性配准和软组织参数识别问题方面的有效性和潜力。
3、VCHAR:Variance-Driven Complex Human Activity Recognition framework with Generative Representation
中文标题:VCHAR:具有生成表示的方差驱动的复杂人类活动识别框架


简介:复杂人类活动识别(CHAR)仍然是普适计算中的一个重要挑战,特别是在智能环境中。现有研究通常需要对原子活动和复杂活动进行仔细标记,这是一项劳动密集且容易出错的任务,因为可用数据集的稀缺性和不准确性。大多数先前的研究集中在精确标记原子活动或它们的序列方法上,这在实际环境中通常是不切实际的。
为此,作者提出了一种新颖的框架VCHAR(基于方差的复杂人类活动识别)。VCHAR将原子活动的输出视为指定时间间隔内的分布,使用生成方法通过基于视频的解释阐明复杂活动分类的推理过程,这些解释对没有机器学习经验的用户也是可访问的。
作者在三个公开数据集上评估了VCHAR,结果表明:VCHAR提高了复杂活动识别的准确性,而无需对原子活动进行精确的时间或序列标记。此外,用户研究证实,与现有方法相比,VCHAR的解释更易于理解,有助于非专家更广泛地理解复杂活动识别。
总之,VCHAR为解决CHAR问题提供了一种创新性的方法,不需要精确标记原子活动,同时提供可解释的复杂活动识别结果。这对于推动复杂人类活动识别技术在智能环境中的应用具有重要意义。
相关文章:
CV每日论文--2024.7.8
1、DisCo-Diff: Enhancing Continuous Diffusion Models with Discrete Latents 中文标题:DisCo-Diff:利用离散潜伏增强连续扩散模型 简介:这篇文章提出了一种新型的离散-连续潜变量扩散模型(DisCo-Diff),旨在改善传统扩散模型(DMs)存在的问…...
【AI大模型】赋能儿童安全:楼层与室内定位实践与未来发展
文章目录 引言第一章:AI与室内定位技术1.1 AI技术概述1.2 室内定位技术概述1.3 楼层定位的挑战与解决方案 第二章:儿童定位与安全监控的需求2.1 儿童安全问题的现状2.2 智能穿戴设备的兴起 第三章:技术实现细节3.1 硬件设计与选择传感器选择与…...
云服务器linux系统安装配置docker
在我们拿到一个纯净的linux系统时,我需要进行一些基础环境的配置 (如果是云服务器可以用XShell远程连接,如果连接不上可能是服务器没开放22端口) 下面是配置环境的步骤 sudo -s进入root权限:退出使用exit sudo -i进入…...
泰勒雷达图2
matplotlib绘制泰勒雷达图 import matplotlib.pyplot as plt import numpy as np from numpy.core.fromnumeric import shape import pandas as pd import dask.dataframe as dd from matplotlib.projections import PolarAxes import mpl_toolkits.axisartist.floating_axes a…...
数据库容灾 | MySQL MGR与阿里云PolarDB-X Paxos的深度对比
开源生态 众所周知,MySQL主备库(两节点)一般通过异步复制、半同步复制(Semi-Sync)来实现数据高可用,但主备架构在机房网络故障、主机hang住等异常场景下,HA切换后大概率就会出现数据不一致的问…...
react根据后端返回数据动态添加路由
以下代码都为部分核心代码 一.根据不同的登录用户,返回不同的权限列表 ,以下是三种不同用户限权列表 const pression { //超级管理员BigAdmin: [{key: "screen",icon: "FileOutlined",label: "数据图表",},{key: "…...
机器学习中的可解释性
「AI秘籍」系列课程: 人工智能应用数学基础 人工智能Python基础 人工智能基础核心知识 人工智能BI核心知识 人工智能CV核心知识 为什么我们需要了解模型如何进行预测 我们是否应该始终信任表现良好的模型?模型可能会拒绝你的抵押贷款申请或诊断你患…...
上海慕尼黑电子展开展,启明智显携物联网前沿方案亮相
随着科技创新的浪潮不断涌来,上海慕尼黑电子展在万众瞩目中盛大开幕。本次展会汇聚了全球顶尖的电子产品与技术解决方案,成为业界瞩目的焦点。启明智显作为物联网彩屏显示领域的佼佼者携产品亮相展会,为参展者带来了RTOS、LINUX全系列方案及A…...
Centos7离线安装ElasticSearch7.4.2
一、官网下载相关的安装包 ElasticSearch7.4.2: elasticsearch-7.4.2-linux-x86_64.tar.gz 下载中文分词器: elasticsearch-analysis-ik-7.4.2.zip 二、上传解压文件到服务器 上传到目录:/home/data/elasticsearch 解压文件࿱…...
深入理解sklearn中的模型参数优化技术
参数优化是机器学习中的关键步骤,它直接影响模型的性能和泛化能力。在sklearn中,参数优化可以通过多种方式实现,包括网格搜索(GridSearchCV)、随机搜索(RandomizedSearchCV)和贝叶斯优化等。本文…...
【Elasticsearch】开源搜索技术的演进与选择:Elasticsearch 与 OpenSearch
开源搜索技术的演进与选择:Elasticsearch 与 OpenSearch 1.历史发展2.OpenSearch 与 Elasticsearch 相同点3.OpenSearch 与 Elasticsearch 不同点3.1 版本大不同3.2 许可证不同3.3 社区不同3.4 功能不同3.5 安全性不同3.6 性能不同3.7 价格不同3.8 两者可相互导入 4…...
欧拉openEuler 22.03 LTS-部署k8sv1.03.1
1.设置ip # vi /etc/sysconfig/network-scripts/ifcfg-ens32 TYPEEthernet PROXY_METHODnone BROWSER_ONLYno BOOTPROTOstatic DEFROUTEyes IPV4_FAILURE_FATALno #IPV6INITyes #IPV6_AUTOCONFyes #IPV6_DEFROUTEyes #IPV6_FAILURE_FATALno #IPV6_ADDR_GEN_MODEeui64 NAMEens1…...
老年生活照护实训室:为养老服务业输送专业人才
本文探讨了老年生活照护实训室在养老服务业专业人才培养中的关键作用。通过详细阐述实训室的功能、教学实践、对学生能力的培养以及面临的挑战和解决方案,强调了其在提升人才素质、满足行业需求方面的重要性,旨在为养老服务业的可持续发展提供有力的人才…...
go语言中使用WaitGroup和channel实现处理多线程问题
WaitGroup 背景 如果将一个任务分为任意个小任务,并且不关心小任务的执行顺序,并且希望等待全部的小任务执行完成后再去操作后面的逻辑,那我推荐你用sync.WaitGRoup 使用方法 比如,有一个任务需要执行 3 个子任务,…...
Open3D 计算点云的平均密度
目录 一、概述 1.1基于领域密度计算原理 1.2应用 二、代码实现 三、实现效果 2.1点云显示 2.2密度计算结果 一、概述 在点云处理中,点的密度通常表示为某个点周围一定区域内的点的数量。高密度区域表示点云较密集,低密度区域表示点云较稀疏。计算…...
C语言之数据在内存中的存储(1),整形与大小端字节序
目录 前言 一、整形数据在内存中的存储 二、大小端字节序 三、大小端字节序的判断 四、字符型数据在内存中的存储 总结 前言 本文主要讲述整型包括字符型是如何在内存中存储的,涉及到大小端字节序这一概念,还有如何判断大小端,希望对大…...
B端全局导航:左侧还是顶部?不是随随便便,有依据在。
一、什么是全局导航 B端系统的全局导航是指在B端系统中的主要导航菜单,它通常位于系统的顶部或左侧,提供了系统中各个模块和功能的入口。全局导航菜单可以帮助用户快速找到和访问系统中的各个功能模块,提高系统的可用性和用户体验。 全局导航…...
什么是海外仓管理自动化?策略及落地实施步骤指南
作为海外仓的管理者,你每天都面临提高海外仓运营效率、降低成本和满足客户需求的问题。海外仓自动化管理技术为这些问题提供了不错的解决思路,不过和任何新技术一样,从策略到落地实施,都有一个对基础逻辑的认识过程。 今天我们整…...
自定义控件三部曲之绘图篇(六)Paint之函数大汇总、ColorMatrix与滤镜效果、setColorFilter
在自定义控件的绘图篇中,Paint 类是核心的组成部分之一,它控制了在 Canvas 上绘制的内容的各种属性,包括颜色、风格、抗锯齿、透明度等等。下面将详细介绍 Paint 的主要功能以及如何使用 ColorMatrix 和 setColorFilter 来实现滤镜效果。 Pa…...
请写sql满足业务:找到连续登录3天以上的用户
为了找到连续登录超过 3 天的用户,我们可以使用 SQL 窗口函数和递归查询来实现。假设有一个 user_logins 表,包含以下字段: user_id(用户ID)login_date(登录日期) 假设 login_date 是 DATE 类…...
【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...
边缘计算医疗风险自查APP开发方案
核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...
从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果
1.获取 authorizationCode: 2.利用 authorizationCode 获取 accessToken:文档中心 3.获取手机:文档中心 4.获取昵称头像:文档中心 首先创建 request 若要获取手机号,scope必填 phone,permissions 必填 …...
2023赣州旅游投资集团
单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...
使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度
文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...
JVM虚拟机:内存结构、垃圾回收、性能优化
1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...
GitHub 趋势日报 (2025年06月06日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...
比较数据迁移后MySQL数据库和OceanBase数据仓库中的表
设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...
