当前位置: 首页 > news >正文

昇思25天学习打卡营第16天 | 文本解码原理-以MindNLP为例

在这里插入图片描述

基于 MindSpore 实现 BERT 对话情绪识别

上几章我们学习过了基于MindSpore来实现计算机视觉的一些应用,那么从这期开始要开始一个新的领域——LLM

首先了解一下什么是LLM

LLM 是 “大型语言模型”(Large Language Model)的缩写。LLM 是一种人工智能模型,通常基于深度学习技术,特别是使用Transformer架构,经过在大规模文本数据上训练,能够理解和生成自然语言文本。这些模型在处理各种自然语言处理任务方面表现出色,例如文本生成、翻译、问答、摘要和对话。

以下是关于 LLM 的一些关键点:

  1. 规模

    • LLM 通常具有数十亿到数百亿个参数。这些参数量级使得模型能够捕捉语言中的复杂模式和语义关系。
  2. 训练数据

    • LLM 使用大量文本数据进行训练,包括书籍、文章、网站内容和其他形式的书面语言。这些数据可以覆盖各种主题和风格,使得模型具有广泛的知识和多样的语言能力。
  3. 应用

    • 生成文本:创建高质量的文章、故事、对话等。
    • 语言翻译:将文本从一种语言翻译到另一种语言。
    • 问答系统:回答用户提出的问题。
    • 文本摘要:从长文中提取关键信息并生成摘要。
    • 对话系统:与用户进行自然的对话交流。
  4. 模型架构

    • 大多数 LLM 基于 Transformer 架构,特别是它的自注意力机制,使模型能够处理序列数据并捕捉长距离依赖关系。
  5. 知名模型

    • 一些知名的 LLM 包括 OpenAI 的 GPT-3、GPT-4,Google 的 BERT 和 T5,以及 Facebook 的 RoBERTa。
  6. 挑战和考虑

    • 计算资源:训练和运行 LLM 需要大量的计算资源和存储空间。
    • 偏见和伦理:由于训练数据可能包含偏见,模型输出也可能反映这些偏见。因此,在使用 LLM 时需要注意伦理问题和偏见风险。
    • 可解释性:大型模型通常被认为是“黑箱”,难以理解其内部决策过程。

LLM 在人工智能和自然语言处理领域有着广泛的应用前景,但也伴随着技术、伦理和社会挑战。

在自然语言处理(NLP)中,文本解码是生成自然语言文本的重要步骤。本文将介绍文本解码的基本原理,并结合MindNLP框架,提供具体的代码实例和详细注释,帮助大家更好地理解文本解码的实现过程。

什么是文本解码

文本解码是将模型的输出(通常是概率分布或词汇索引)转换为可读的自然语言文本的过程。在生成文本时,常见的解码方法包括贪心解码、束搜索(Beam Search)、随机采样等。

MindNLP简介

MindNLP是昇思(MindSpore)提供的一个用于自然语言处理的工具包,旨在简化NLP模型的开发和部署。本文将通过MindNLP实现文本解码过程,并展示如何利用该工具包进行文本生成任务。

实验环境

首先,我们需要安装MindNLP及其依赖库。

!pip install mindnlp

文本解码实现

以下是一个使用MindNLP实现文本解码的实例代码:

import mindspore as ms
import mindnlp
from mindnlp.modules import RNNDecoder
from mindnlp.models import Seq2SeqModel
from mindspore import nn
from mindspore import Tensor# 设置随机种子以确保结果可复现
ms.set_seed(42)# 定义解码器
class GreedyDecoder(RNNDecoder):def __init__(self, rnn, out_proj):super(GreedyDecoder, self).__init__(rnn, out_proj)def decode(self, encoder_outputs, max_length, start_token, end_token):batch_size = encoder_outputs.shape[0]decoder_input = Tensor([[start_token]] * batch_size, dtype=ms.int32)decoder_hidden = Nonedecoded_sentences = []for _ in range(max_length):decoder_output, decoder_hidden = self.forward(decoder_input, decoder_hidden, encoder_outputs)topv, topi = decoder_output.topk(1)decoder_input = topi.squeeze().detach()decoded_sentences.append(decoder_input.asnumpy())if (decoder_input == end_token).all():breakreturn decoded_sentences# 定义编码器和解码器
encoder = nn.LSTM(input_size=10, hidden_size=20, num_layers=2, batch_first=True)
decoder = GreedyDecoder(nn.LSTM(input_size=10, hidden_size=20, num_layers=2, batch_first=True), nn.Dense(20, 10))# 定义序列到序列模型
model = Seq2SeqModel(encoder, decoder)# 模拟输入数据
encoder_outputs = Tensor(ms.numpy.random.randn(5, 7, 20), dtype=ms.float32)
start_token = 0
end_token = 9
max_length = 10# 进行解码
decoded_sentences = decoder.decode(encoder_outputs, max_length, start_token, end_token)# 打印解码结果
for i, sentence in enumerate(decoded_sentences):print(f"Sentence {i + 1}: {sentence}")

代码解释

  1. 导入必要的库
    首先,导入MindSpore和MindNLP的相关模块。RNNDecoder是用于解码RNN模型输出的模块,Seq2SeqModel是用于构建序列到序列模型的类。

  2. 设置随机种子
    使用ms.set_seed(42)确保结果的可复现性。

  3. 定义解码器
    GreedyDecoder类继承自RNNDecoder,实现贪心解码算法。在解码过程中,依次选取每个时间步概率最大的词作为输出。

  4. 定义编码器和解码器
    使用LSTM定义编码器和解码器,并将解码器封装在GreedyDecoder中。

  5. 定义序列到序列模型
    使用Seq2SeqModel类将编码器和解码器封装在一起。

  6. 模拟输入数据
    创建一个随机的编码器输出,作为解码器的输入。定义起始标记和结束标记,以及最大解码长度。

  7. 进行解码
    调用解码器的decode方法,执行解码过程。

  8. 打印解码结果
    打印解码得到的句子,展示每个时间步的预测结果。

通过本文的介绍,我们了解了文本解码的基本原理,并结合MindNLP框架,详细讲解了如何实现一个简单的贪心解码器。希望这篇文章能帮助大家更好地理解文本生成任务中的解码过程。如果有任何问题或建议,欢迎在评论区留言讨论。

在这里插入图片描述

相关文章:

昇思25天学习打卡营第16天 | 文本解码原理-以MindNLP为例

基于 MindSpore 实现 BERT 对话情绪识别 上几章我们学习过了基于MindSpore来实现计算机视觉的一些应用,那么从这期开始要开始一个新的领域——LLM 首先了解一下什么是LLM LLM 是 “大型语言模型”(Large Language Model)的缩写。LLM 是一种…...

Unity之Text组件换行\n没有实现+动态中英互换

前因:文本中的换行 \n没有换行而是打印出来了,解决方式 因为unity会默认把\n替换成\\n 面板中使用富文本这个选项啊 没有用 m_text.text m_text.text.Replace("\\n", "\n"); ###动态中英文互译 using System.Collections; using…...

vue3+ el-tree 展开和折叠,默认展开第一项

默认第一项展开: 展开所有项&#xff1a; 折叠所有项&#xff1a; <template><el-treestyle"max-width: 600px":data"treeData"node-key"id":default-expanded-keys"defaultExpandedKey":props"defaultProps"…...

ProFormList --复杂数据联动ProFormDependency

需求&#xff1a; &#xff08;1&#xff09;数据联动&#xff1a;测试数据1、2互相依赖&#xff0c;测试数据1<测试数据2,测试数据2>测试数据1。 &#xff08;2&#xff09;点击添加按钮&#xff0c;添加一行。 &#xff08;3&#xff09;自定义操作按钮。 &#xff0…...

Git、Github、tortoiseGit下载安装调试全套教程

一、Git 1.下载安装Git 编辑器可默认Vim&#xff0c;可换成别的&#xff0c;此处换成VScode&#xff0c;换成VScode或别的都需要单独下载和调用 &#xff08;1&#xff09;Git安装&#xff1a;https://www.cnblogs.com/xiuxingzhe/p/9300905.html 超级完整的 Git的下载、安…...

老师怎么快速发布成绩?

期末考试的钟声刚刚敲响&#xff0c;成绩单的发放却成了老师们的一大难题。每当期末成绩揭晓&#xff0c;老师们便要开始一项繁琐的任务——将每一份成绩单逐一私信给家长。这不仅耗费了大量的时间和精力&#xff0c;也让本就忙碌的期末工作变得更加繁重。然而&#xff0c;随着…...

央视揭露:上百元的AI填报高考志愿真的靠谱吗?阿里云新增两位AI圈“代言人”!|AI日报

文章推荐 MiniMax闫俊杰&#xff1a;国内模型远不及GPT-4&#xff1b;OpenAI隐瞒黑客曾入侵其内部系统&#xff5c;AI日报 今日热点 月之暗面、智联招聘成为阿里云新“代言人”&#xff0c;使用阿里云强大算力和大模型服务平台提升模型推理效率 7月8日&#xff0c;阿里云官…...

TPM管理咨询公司甄选指南

在竞争激烈的市场环境中&#xff0c;TPM&#xff08;全面生产维护&#xff09;管理咨询公司的重要性日益凸显。然而&#xff0c;如何在众多咨询公司中筛选出最适合自己企业的合作伙伴&#xff0c;成为了许多企业决策者面临的难题。本文将从专业度、行业经验、服务质量和性价比等…...

探索 Scikit-Learn:机器学习的强大工具库

Scikit-Learn 探索 Scikit-Learn&#xff1a;机器学习的强大工具库主要功能模块分类&#xff08;Classification&#xff09;回归&#xff08;Regression&#xff09;聚类&#xff08;Clustering&#xff09;降维&#xff08;Dimensionality Reduction&#xff09;模型选择&…...

音视频质量评判标准

一、实时通信延时指标 通过图中表格可以看到&#xff0c;如果端到端延迟在200ms以内&#xff0c;说明整个通话是优质的&#xff0c;通话效果就像大家在同一个房间里聊天一样&#xff1b;300ms以内&#xff0c;大多数人很满意&#xff0c;400ms以内&#xff0c;有小部分人可以感…...

如何在vue3中使用scss

一 要使用scss首先需要下载相关的包 可以在终端使用下面的命令下载相关包 npm install -D sass 二 在src文件下新建一个文件夹叫做styles 在文件夹下创建三个文件 index.scss主要用来引用其他文件 reset.scss用来清除默认的样式 variable.scss用来配置全局属性 三 需要在v…...

Gartner发布采用美国防部模型实施零信任的方法指南:七大支柱落地方法

零信任是网络安全计划的关键要素&#xff0c;但制定策略可能会很困难。安全和风险管理领导者应使用美国国防部模型的七大支柱以及 Gartner 研究来设计零信任策略。 战略规划假设 到 2026 年&#xff0c;10% 的大型企业将拥有全面、成熟且可衡量的零信任计划&#xff0c;而 202…...

Flutter——最详细(Badge)使用教程

背景 主要常用于组件叠加上圆点提示&#xff1b; 使用场景&#xff0c;消息数量提示&#xff0c;消息红点提示 属性作用backgroundColor红点背景色smallSize设置红点大小isLabelVisible是否显示offset设置红点位置alignment设置红点位置child设置底部组件 代码块 class Badge…...

SQLServer的系统数据库用别的服务器上的系统数据库替换后做跨服务器连接时出现凭证、非对称金钥或私密金钥的资料无效

出错作业背景&#xff1a; 公司的某个sqlserver服务器要做迁移&#xff0c;由于该sqlserver服务器上数据库很多&#xff0c;并且做了很多的job和维护计划&#xff0c;重新安装的sqlserver这些都是空的&#xff0c;于是就想到了把系统4个系统数据库进行替换&#xff0c;然后也把…...

vue前端面试

一 .v-if和v-show的区别 v-if 和 v-show 是 Vue.js 中两个常用的条件渲染指令&#xff0c;它们都可以根据条件决定是否渲染某个元素。但是它们之间存在一些区别。 语法&#xff1a;v-if 和 v-show 的语法相同&#xff0c;都接收一个布尔值作为参数。 <div v-if"show…...

【网络安全】Host碰撞漏洞原理+工具+脚本

文章目录 漏洞原理虚拟主机配置Host头部字段Host碰撞漏洞漏洞场景工具漏洞原理 Host 碰撞漏洞,也称为主机名冲突漏洞,是一种网络攻击手段。常见危害有:绕过访问控制,通过公网访问一些未经授权的资源等。 虚拟主机配置 在Web服务器(如Nginx或Apache)上,多个网站可以共…...

unattended-upgrade进程介绍

unattended-upgrade 是一个用于自动更新 Debian 和 Ubuntu 系统的软件包。这个进程通常用于定期下载并安装安全更新&#xff0c;以保持系统的安全性和稳定性。 具体来说&#xff0c;这个命令 /usr/bin/python3 /usr/bin/unattended-upgrade --download-only 表示运行 unattend…...

SpringBoot 中多例模式的神秘世界:用法区别以及应用场景,最后的灵魂拷问会吗?- 第519篇

历史文章&#xff08;文章累计500&#xff09; 《国内最全的Spring Boot系列之一》 《国内最全的Spring Boot系列之二》 《国内最全的Spring Boot系列之三》 《国内最全的Spring Boot系列之四》 《国内最全的Spring Boot系列之五》 《国内最全的Spring Boot系列之六》 《…...

基于STM32设计的智能婴儿床(ESP8266局域网)_2024升级版_180

基于STM32设计的智能婴儿床(采用STM32F103C8T6)(180) 文章目录 一、设计需求【1】项目功能介绍【2】程序最终的运行逻辑【3】硬件模块组成【4】ESP8266模块配置【5】上位机开发思路【6】系统功能模块划分1.2 项目开发背景1.3 开发工具的选择1.4 系统框架图1.5 系统原理图1.6 硬…...

C++(第四天----拷贝函数、类的组合、类的继承)

一、拷贝构造函数&#xff08;复制构造函数&#xff09; 1、概念 拷贝构造函数&#xff0c;它只有一个参数&#xff0c;参数类型是本类的引用。如果类的设计者不写拷贝构造函数&#xff0c;编译器就会自动生成拷贝构造函数。大多数情况下&#xff0c;其作用是实现从源对象到目…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

无法与IP建立连接,未能下载VSCode服务器

如题&#xff0c;在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈&#xff0c;发现是VSCode版本自动更新惹的祸&#xff01;&#xff01;&#xff01; 在VSCode的帮助->关于这里发现前几天VSCode自动更新了&#xff0c;我的版本号变成了1.100.3 才导致了远程连接出…...

PL0语法,分析器实现!

简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...

SpringTask-03.入门案例

一.入门案例 启动类&#xff1a; package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

Python ROS2【机器人中间件框架】 简介

销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)

安全领域各种资源&#xff0c;学习文档&#xff0c;以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具&#xff0c;欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...

GraphQL 实战篇:Apollo Client 配置与缓存

GraphQL 实战篇&#xff1a;Apollo Client 配置与缓存 上一篇&#xff1a;GraphQL 入门篇&#xff1a;基础查询语法 依旧和上一篇的笔记一样&#xff0c;主实操&#xff0c;没啥过多的细节讲解&#xff0c;代码具体在&#xff1a; https://github.com/GoldenaArcher/graphql…...