当前位置: 首页 > news >正文

光学传感器图像处理流程(一)

光学传感器图像处理流程(一)

  • 1. 处理流程总览
  • 2. 详细处理流程
    • 2.1. 图像预处理
      • 2.1.1. 降噪处理
      • 2.1.2. 薄云处理
      • 2.1.3. 阴影处理
    • 2.2. 辐射校正
      • 2.2.1. 辐射定标
      • 2.2.2. 大气校正
      • 2.2.3. 地形校正
    • 2.3. 几何校正
      • 2.3.1. 图像配准
      • 2.3.2. 几何粗校正
      • 2.3.3. 几何精校正

1. 处理流程总览

2. 详细处理流程

2.1. 图像预处理

2.1.1. 降噪处理

由于传感器的因素,一些获取的遥感图像中,会出现周期性的噪声,我们必须对其进行消除或减弱方可使用。

(1) 消除周期性噪声和尖锐性噪声

周期性噪声一般重叠在原图像上,成为周期性的干涉图形,具有不同的幅度、频率、和相位。它形成一系列的尖峰或者亮斑,代表在某些空间频率位置最为突出。一般可以用带通或者槽形滤波的方法来消除。

消除尖峰噪声,特别是与扫描方向不平行的,一般用傅立叶变换进行滤波处理的方法比较方便。

(2) 除坏线和条带

去除遥感图像中的坏线。遥感图像中通常会出现与扫描方向平行的条带,还有一些与辐射信号无关的条带噪声,一般称为坏线。一般采用傅里叶变换和低通滤波进行消除或减弱。

2.1.2. 薄云处理

由于天气原因,对于有些遥感图形中出现的薄云需要进行检测和减弱处理。

2.1.3. 阴影处理

由于太阳高度角的原因,有些图像会出现山体阴影,可以采用比值法对其进行消除。

2.2. 辐射校正

2.2.1. 辐射定标

定义:建立遥感传感器的数字量化输出值DN与其所对应视场中辐射亮度值之间的定量关系。

目的:消除传感器本身的误差,确定传感器入口处的准确辐射值,即将记录的原始DN值转换为大气层顶反射率。

定标方法包括:实验室定标、机上/星上定标、场地定标。

不同的传感器,其DN值转换为辐亮度公式不同:Landsat系列卫星采用L=Gain*DN+Bias,环境星采用公式L= DN/Gain+Bias。

2.2.2. 大气校正

将辐亮度或者表面反射率转换为地表实际反射率。其目的是:消除大气散射、吸收、反射引起的误差。大气校正是遥感影像辐射校正的主要内容。

目前主要的校正方法分为基于图像特征和大气辐射传输模型方法,如6S、MODTRAN等。后者比较复杂。一般而言:

(1) 如果是精细定量研究,选择基于辐射传输模型的大气校正方法。

(2) 如果是做动态监测,两者皆可。

(3) 如果缺少相应的大气等参数,只能选择较简单的方法。

2.2.3. 地形校正

消除地形起伏带给遥感影像的影响。主要方法有C校正、COS校正、SCS校正、SCS+C校正等。

2.3. 几何校正

通常我们获取的遥感影像一般都是L2级产品,为使其定位准确,我们在使用遥感图像前,必须对其进行几何精纠正等操作,在地形起伏较大地区,还必须对其进行正射纠正。

2.3.1. 图像配准

为同一地区的两种数据源能在同一个地理坐标系中进行叠加显示和数学运算,必须先将其中一种数据源的地理坐标配准到另一种数据源的地理坐标上,这个过程叫做配准。

(1)影像对栅格图像的配准
将一幅遥感影像配准到相同地区另一幅影像或栅格地图中,使其在空间位置能重合叠加显示。

(2)影像对矢量图形的配准
将一幅遥感影像配准到相同地区一幅矢量图形中,使其在空间位置上能进行重合叠加显示。

2.3.2. 几何粗校正

几何粗校正是针对引起几何畸变的原因进行的,地面接收站在提供给用户资料前,已按常规处理方案与图像同时接收到的有关运行姿态、传感器性能指标、大气状态、太阳高度角对该幅图像几何畸变进行相应校正。

2.3.3. 几何精校正

为准确对遥感数据进行地理定位,需要将遥感数据准确定位到特定的地理坐标系的,这个过程称为几何精纠正。

(1)图像对图像的纠正

利用已有准确地理坐标和投影信息的遥感影像,对原始遥感影像进行纠正,使其具有准确的地理坐标和投影信息。

(2)图像对地图(栅格或矢量)

利用已有准确地理坐标和投影信息的扫描地形图或矢量地形图,对原始遥感影像进行纠正,使其具有准确的地理坐标和投影信息。

(3)图像对已知坐标点(地面控制点)
利用已有准确地理坐标和投影信息的已知坐标点或地面控制点,对原始遥感影像进行纠正,使其具有准确的地理坐标和投影信息。

2.3.4. 正射校正

利用已有地理参考数据(影像、地形图和控制点等)和数字高程模型数据(DEM),对原始遥感影像进行纠正,可消除或减弱地形起伏带来的影像变形,使得遥感影像具有准确的地面坐标和投影信息。

相关文章:

光学传感器图像处理流程(一)

光学传感器图像处理流程(一) 1. 处理流程总览2. 详细处理流程2.1. 图像预处理2.1.1. 降噪处理2.1.2. 薄云处理2.1.3. 阴影处理 2.2. 辐射校正2.2.1. 辐射定标2.2.2. 大气校正2.2.3. 地形校正 2.3. 几何校正2.3.1. 图像配准2.3.2. 几何粗校正2.3.3. 几何精…...

el-table 树状表格查询符合条件的数据

需要对el-table的树状表格根据输入机构名称&#xff0c;筛选出符合条件的数据&#xff0c;可用如下方法&#xff1a; 页面内容如下&#xff1a; <el-input v-model"ogeName" placeholder"请输入机构名称"><el-table :data"list" row…...

MQTT教程--服务器使用EMQX和客户端使用MQTTX

什么是MQTT MQTT&#xff08;Message Queuing Telemetry Transport&#xff09;是一种轻量级、基于发布-订阅模式的消息传输协议&#xff0c;适用于资源受限的设备和低带宽、高延迟或不稳定的网络环境。它在物联网应用中广受欢迎&#xff0c;能够实现传感器、执行器和其它设备…...

326. 3 的幂

哈喽&#xff01;大家好&#xff0c;我是奇哥&#xff0c;一位专门给面试官添堵的职业面试员 文章持续更新&#xff0c;可以微信搜索【小奇JAVA面试】第一时间阅读&#xff0c;回复【资料】更有我为大家准备的福利哟&#xff01; 文章目录 一、题目二、答案三、总结 一、题目 …...

多标签问题

一、多标签问题与单标签问题的区别&#xff1a; 多标签问题是单标签问题的推广。 举个例子&#xff0c;同时识别图片中的小汽车&#xff0c;公交车&#xff0c;行人时&#xff0c;标签值有三个&#xff1a;小汽车&#xff0c;公交车&#xff0c;行人。 单标签问题仅对一个标签…...

suricata7 rule加载(三)加载options

suricata7.0.5 加载options (msg:“HTTP Request Example”; flow:established,to_server; http.method; content:“POST”; http.uri; content:“query.php”; bsize:>9; http.protocol; content:“HTTP/1.1”; bsize:8; http.host; content:“360”; bsize:>3; class…...

【电路笔记】-C类放大器

C类放大器 文章目录 C类放大器1、概述2、C类放大介绍3、C类放大器的功能4、C 类放大器的效率5、C类放大器的应用:倍频器6、总结1、概述 尽管存在差异,但我们在之前有关 A 类、B 类和 AB 类放大器的文章中已经看到,这三类放大器是线性或部分线性的,因为它们在放大过程中再现…...

c++语法之函数重载

引例 我们在C语言里面写add函数的时候&#xff0c;只能支持一种类型的相加&#xff0c;除非我们创建多个add函数&#xff1a; 但是这样写并不方便&#xff0c;于是就有了c的函数重载。 函数重载 函数重载就是可以将多个参数类型、顺序、数量不同&#xff0c;实现逻辑相同的函…...

EtherCAT主站IGH-- 11 -- IGH之fmmu_config.h/c文件解析

EtherCAT主站IGH-- 11 -- IGH之fmmu_config.h/c文件解析 0 预览一 该文件功能`fmmu_config.c` 文件功能函数预览二 函数功能介绍1. `ec_fmmu_config_init`2. `ec_fmmu_set_domain_offset_size`3. `ec_fmmu_config_page`示例用法示例详细说明三 h文件翻译四 c文件翻译该文档修改…...

如何使用IDEA快速清理无效代码(荣耀典藏版)

大家好&#xff0c;我是月夜枫。 今天分享一下IDEA中很有实用价值的Analyze&#xff0c;那么Analyze是用来做什么的呢&#xff1f; 主要用来清理没有引用的代码&#xff0c;包括方法、实体类以及没有使用的Mapper和Service等。 为了是项目更加整洁&#xff0c;可以使用Idea中…...

ELK优化之Filebeat部署

目录 1.安装配置Nginx 2.安装 Filebeat 3.设置 filebeat 的主配置文件 4.修改Logstash配置 5.启动配置 6.kibana验证 主机名ip地址主要软件es01192.168.9.114ElasticSearches02192.168.9.115ElasticSearches03192.168.9.116ElasticSearch、Kibananginx01192.168.9.113ng…...

蝙蝠优化算法(Bat Algorithm,BA)及其Python和MATLAB实现

蝙蝠优化算法&#xff08;Bat Algorithm&#xff0c;简称BA&#xff09;是一种基于蝙蝠群体行为的启发式优化算法&#xff0c;由Xin-She Yang于2010年提出。该算法模拟了蝙蝠捕食时在探测目标、适应环境和调整自身位置等过程中的行为&#xff0c;通过改进搜索过程来实现优化问题…...

vscode运行java中文乱码,引发的mac配置问题

文章目录 问题 vscode 安装 java环境之后 public class Main{ public static void main(String[] args) { System.out.println(“哈哈”); } } ➜ .leetcode cd “/Users/leesin/.leetcode/.vscode/” && javac -encoding utf-8 Main.java && java Main &am…...

MySQL之备份与恢复(五)

备份与恢复 备份数据 符号分隔文件备份 可以使用SQL命令SELECT INTO OUTFILE以符号分隔文件格式创建数据的逻辑备份。(可以用mysqldump的 --tab选项导出到符号分隔文件中)。符号分隔文件包含以ASCII展示的原始数据&#xff0c;没有SQL、注释和列名。下面是一个导出为逗号分隔…...

离线运行Llama3:本地部署终极指南_liama2 本地部署

4月18日&#xff0c;Meta在官方博客官宣了Llama3&#xff0c;标志着人工智能领域迈向了一个重要的飞跃。经过笔者的个人体验&#xff0c;Llama3 8B效果已经超越GPT-3.5&#xff0c;最为重要的是&#xff0c;Llama3是开源的&#xff0c;我们可以自己部署&#xff01; 本文和大家…...

【YOLO8系列】(二)YOLOv8环境配置,手把手嘴对嘴保姆教学

目录 一. 准备环境 1.Anaconda下载 2.创建yolov8虚拟环境 3.pytorch安装 4.CUDA下载 5.CUDNN下载 二、yolov8模型下载 1.clone模型 2.pycharm配置 ①解释器配置 ②终端配置 3.安装必要库 4.下载训练模型 三、 环境验证 四、总结 YOLOv8 是 YOLO 系列最新的目标…...

MFC常见问题解决

文章目录 1. 单文档程序初始化显示设置问题解决方案 2. MFC中控件响应出错 1. 单文档程序初始化显示设置 问题 在Microsoft Foundation Classes (MFC) 中&#xff0c;单文档应用程序&#xff08;SDI&#xff09;的初始化时默认并不设置为最大显示。但你可以通过编程方式在程序…...

学生管理系统 | python

1. 题目描述 ****************************** 欢迎使用学生管理系统 ****************************** 1. 添加学生 2. 查看学生列表 3. 查看学生信息 4. 删除学生 5. 退出系统 1 请输入学生姓名: zhangsan 请输入学生学号: 10010 请输入学生班级: 3 请输入学生成…...

opencv读取视频文件夹内视频的名字_时长_帧率_分辨率写入excel-cnblog

看视频的时候有的视频文件名贼长。想要翻看&#xff0c;在文件夹里根本显示不出来&#xff0c;缩短又会丢失一些信息&#xff0c;所以我写了一份Python代码&#xff0c;直接获取视频的名字&#xff0c;时长&#xff0c;帧率&#xff0c;还有分辨率写到excel里。 实际效果如下图…...

js对象的方法速览---数组的静态方法,实例方法和属性合集,各包含一个示例

tip&#xff1a; 本文仅作为查找和基本使用的展示&#xff0c;需要深入了解这些方法的使用请参考&#xff1a;Object - JavaScript | MDN (mozilla.org) 可以通过目录快速锁定需要查找的方法和查看它的使用 目录 tip&#xff1a; 新建一个对象 实例属性 实例方法 hasOwn…...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作&#xff1a; 1&#xff09;、切换集群 2&#xff09;、切换节点 3&#xff09;、切换到 apparmor 的目录 4&#xff09;、执行 apparmor 策略模块 5&#xff09;、修改 pod 文件 6&#xff09;、…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

在WSL2的Ubuntu镜像中安装Docker

Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包&#xff1a; for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

Python ROS2【机器人中间件框架】 简介

销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险

C#入门系列【类的基本概念】&#xff1a;开启编程世界的奇妙冒险 嘿&#xff0c;各位编程小白探险家&#xff01;欢迎来到 C# 的奇幻大陆&#xff01;今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类&#xff01;别害怕&#xff0c;跟着我&#xff0c;保准让你轻松搞…...

深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏

一、引言 在深度学习中&#xff0c;我们训练出的神经网络往往非常庞大&#xff08;比如像 ResNet、YOLOv8、Vision Transformer&#xff09;&#xff0c;虽然精度很高&#xff0c;但“太重”了&#xff0c;运行起来很慢&#xff0c;占用内存大&#xff0c;不适合部署到手机、摄…...