将pytorch 模型封装为c++ api 例子
在 PyTorch 中,通常使用 Python 来定义和训练模型,但是可以将训练好的模型导出为 TorchScript,然后在 C++ 中加载和使用。以下是一个详细的过程,展示了如何将 PyTorch 模型封装成 C++ API:
步骤 1: 定义和训练模型(Python)
首先,在 Python 中定义并训练你的 PyTorch 模型。
import torch
import torch.nn as nn
import torch.optim as optim
# 定义模型
class SimpleNN(nn.Module):def __init__(self):super(SimpleNN, self).__init__()self.fc1 = nn.Linear(10, 5)self.fc2 = nn.Linear(5, 2)def forward(self, x):x = torch.relu(self.fc1(x))x = self.fc2(x)return x
# 实例化模型
model = SimpleNN()
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
# 训练模型(略)
# ...
# 保存模型为 TorchScript
model.eval()
example_input = torch.rand(1, 10)
traced_script_module = torch.jit.trace(model, example_input)
traced_script_module.save("model.pt")
步骤 2: 导出模型为 TorchScript
使用 torch.jit.trace
或 torch.jit.script
将模型导出为 TorchScript 格式,并保存到文件中。
步骤 3: 编写 C++ 代码加载模型
在 C++ 中,使用 PyTorch C++ API 来加载模型并创建一个推理函数。
#include <torch/script.h> // PyTorch C++ API
torch::jit::script::Module load_model(const std::string& model_path) {torch::jit::script::Module module;try {// 加载模型module = torch::jit::load(model_path);}catch (const c10::Error& e) {std::cerr << "error loading the model\n";exit(EXIT_FAILURE);}return module;
}
torch::Tensor infer(const torch::jit::script::Module& module, torch::Tensor input) {// 执行前向传播torch::Tensor output = module.forward({input}).toTensor();return output;
}
int main() {// 加载模型torch::jit::script::Module module = load_model("model.pt");// 创建输入张量torch::Tensor input_tensor = torch::ones({1, 10});// 执行推理torch::Tensor output_tensor = infer(module, input_tensor);// 处理输出(略)// ...
}
步骤 4: 编译和运行 C++ 代码
为了编译 C++ 代码,你需要链接 PyTorch C++ 库。这通常涉及到从源代码构建 PyTorch 或使用预编译的库。
g++ -std=c++11 -I /path/to/libtorch/include -I /path/to/libtorch/include/torch/csrc/api/include infer.cpp -o infer -L /path/to/libtorch/lib -ltorch -ltorch_cpu -lc10
步骤 5: 运行 C++ 推理程序
./infer
这个程序将加载 Python 中训练并导出的模型,然后使用 C++ 进行推理。这种方式允许你在嵌入式设备或移动设备上使用 C++ 来部署 PyTorch 模型,从而利用 C++ 的高性能和硬件级别的控制。
相关文章:
将pytorch 模型封装为c++ api 例子
在 PyTorch 中,通常使用 Python 来定义和训练模型,但是可以将训练好的模型导出为 TorchScript,然后在 C 中加载和使用。以下是一个详细的过程,展示了如何将 PyTorch 模型封装成 C API: 步骤 1: 定义和训练模型&#x…...

珠宝迷你秤方案
珠宝迷你秤作为一种便携式电子称重设备,因其小巧、便携、精度高等特点,广泛应用于各种需要精确称重的场景。可能这个目前在国内使用的人比较少,但在西方国家珠宝迷你秤却是可以用来送礼的物品。因为珠宝迷你秤的外观跟手机外观大多相似&#…...

边缘概率密度、条件概率密度、边缘分布函数、联合分布函数关系
目录 二维随机变量及其分布离散型随机变量连续型随机变量边缘分布边缘概率密度举例边缘概率密度 条件概率密度边缘概率密度与条件概率密度的区别边缘概率密度条件概率密度举个具体例子 参考资料 二维随机变量及其分布 离散型随机变量 把所有的概率,都理解成不同质量…...

软件架构之系统分析与设计方法(2)
软件架构之系统分析与设计方法(2) 8.4 面向对象的分析与设计8.4.1 面向对象的基本概念8.4.2 面向对象分析8.4.3 统一建模语言 8.5 用户界面设计8.5.1 用户界面设计的原则8.5.2 用户界面设计过程 8.6 工作流设计8.6.1 工作流设计概述8.6.2 工作流管理系统 8.7 简单分…...
AD确定板子形状
方法1 修改栅格步进值,手动绘制 https://cnblogs.com/fqhy/p/13768031.html 方法2 器件摆放确定板子形状 https://blog.csdn.net/Mark_md/article/details/116445961...

CSS【详解】边框 border,边框-圆角 border-radius,边框-填充 border-image,轮廓 outline
边框 border border 是以下三种边框样式的简写: border-width 边框宽度 —— 数值 px(像素),thin(细),medium(中等),thick(粗)border-style 边框线型 —— none【默认值…...
Error: EBUSY: resource busy or locked, rmdir...npm install执行报错
Error: EBUSY: resource busy or locked, rmdir...npm install执行报错 你一个文件夹目录开了两个cmd命令行(或者powershell),关掉一个就好了。...
Hot100-排序
1.快排 215. 数组中的第K个最大元素 - 力扣(LeetCode) (1)第k大的元素在排序数组中的位置是nums.length - k。 假设我们有一个数组nums [3, 2, 1, 5, 6, 4],并且我们想找到第2大的元素。 步骤 1:排序数…...

树链剖分相关
树链剖分这玩意儿还挺重要的,是解决静态树问题的一个很好的工具~ 这里主要介绍一下做题时经常遇到的两个操作: 1.在线求LCA int LCA(int x,int y){while(top[x]!top[y])if(dep[top[x]]>dep[top[y]]) xfa[top[x]];else yfa[top[y]];return dep[x]&l…...

如何将Grammarly内嵌到word中(超简单!)
1、下载 安装包下载链接见文章结尾 官网的grammarly好像只能作为单独软件使用,无法内嵌到word中🧐🧐🧐 2、双击安装包(安装之前把Office文件都关掉) 3、安装完成,在桌面新建个word文件并打开 注…...

OTG -- 用于FPGA的ULPI接口芯片USB3320讲解(续)
目录 1 背景 2 USB3320在FPGA上的应用 1 背景 最近使用FPGA驱动USB PHY实现高速USB功能,为了方便,购买了一块微雪的USB3300子板,发现怎么都枚举不了,使用逻辑分析仪抓取波形,和STM32F407USB3300波形进行对比…...

了解劳动准备差距:人力资源专业人员的战略
劳动准备差距是一个紧迫的问题,在全球人事部门回应,谈论未开发的潜力和错过的机会。想象一下,人才和需求之间的悬崖之间有一座桥,这促使雇主思考:我们是否为员工提供了足够的设备来应对未来的考验? 这种不…...

SAP PS学习笔记02 - 网络,活动,PS文本,PS文书(凭证),里程碑
上一章讲了PS 的概要,以及创建Project,创建WBS。 SAP PS学习笔记01 - PS概述,创建Project和WBS-CSDN博客 本章继续讲PS的后续内容。包括下面的概念和基本操作,以及一些Customize: - 网络(Network…...

Github 2024-07-07php开源项目日报 Top9
根据Github Trendings的统计,今日(2024-07-07统计)共有9个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量PHP项目9Blade项目2JavaScript项目1Laravel:表达力和优雅的 Web 应用程序框架 创建周期:4631 天开发语言:PHP, BladeStar数量:75969 个Fork数…...
算法训练(leetcode)第二十六天 | 452. 用最少数量的箭引爆气球、435. 无重叠区间、763. 划分字母区间
刷题记录 452. 用最少数量的箭引爆气球思路一思路二 435. 无重叠区间763. 划分字母区间 452. 用最少数量的箭引爆气球 leetcode题目地址 思路一 先按起始坐标从小到大排序。排序后找交集并将交集存入一个数组中,遍历气球数组从交集数组中找交集,找到与…...
Ubuntu 下 Docker安装 2024
Ubuntu 下 Docker安装 2024 安装1.卸载老版本2.更新apt包索引3.安装必要工具包4.添加Docker GPG秘钥5.配置仓库源6.安装Docker Engine7.启动docker 国内镜像源下架的解决办法1.修改文件 /etc/docker/daemon.json2.换源3.查看是否换源成功4.重启 安装 1.卸载老版本 sudo apt-ge…...

发送者的可靠性
这篇文章是了解MQ消息的可靠性,即:消息应该至少被消费者处理1次 那么问题来了: 我们该如何确保MQ消息的可靠性?如果真的发送失败,有没有其它的兜底方案? 首先,我们一起分析一下消息丢失的可能…...

Profibus_DP转ModbusTCP网关模块连马保与上位机通讯
Profibus转ModbusTCP网关模块(XD-ETHPB20)广泛应用于工业自动化领域。例如,可以将Profibus网络中的传感器数据转换为ModbusTCP协议,实现数据的实时监控和远程控制。本文介绍了如何利用Profibus转ModbusTCP网关(XD-ETHP…...

移动应用:商城购物类,是最常见的,想出彩或许就差灵犀一指
在移动应用中,商城购物类的非常常见,模式也非常成熟,想要设计的出彩也是有难度的,这次分享一些不同的。...
linux 查看历史命令列表来访问之前的内容的命令是:history
在Linux中,要查看历史命令列表以访问之前的内容,你可以使用history命令。这个命令会显示你当前shell会话(或者,如果你指定了参数,可能是所有会话)中执行过的命令列表。 基本用法 简单地输入history并按下…...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放
简介 前面两期文章我们介绍了I2S的读取和写入,一个是通过INMP441麦克风模块采集音频,一个是通过PCM5102A模块播放音频,那如果我们将两者结合起来,将麦克风采集到的音频通过PCM5102A播放,是不是就可以做一个扩音器了呢…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...
基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解
JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用,结合SQLite数据库实现联系人管理功能,并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能,同时可以最小化到系统…...
Spring AI Chat Memory 实战指南:Local 与 JDBC 存储集成
一个面向 Java 开发者的 Sring-Ai 示例工程项目,该项目是一个 Spring AI 快速入门的样例工程项目,旨在通过一些小的案例展示 Spring AI 框架的核心功能和使用方法。 项目采用模块化设计,每个模块都专注于特定的功能领域,便于学习和…...
Vue3中的computer和watch
computed的写法 在页面中 <div>{{ calcNumber }}</div>script中 写法1 常用 import { computed, ref } from vue; let price ref(100);const priceAdd () > { //函数方法 price 1price.value ; }//计算属性 let calcNumber computed(() > {return ${p…...

从零开始了解数据采集(二十八)——制造业数字孪生
近年来,我国的工业领域正经历一场前所未有的数字化变革,从“双碳目标”到工业互联网平台的推广,国家政策和市场需求共同推动了制造业的升级。在这场变革中,数字孪生技术成为备受关注的关键工具,它不仅让企业“看见”设…...