当前位置: 首页 > news >正文

好用的声音分析的软件和网站

有许多软件和网站可以帮助进行声音分析,从专业级的音频处理软件到在线工具,以下是一些推荐:

专业音频分析软件

  1. Audacity

    • 开源且免费的音频编辑和分析工具。
    • 提供基本的音频录制、编辑和分析功能。
    • 支持多种插件,扩展其功能。
  2. Adobe Audition

    • 专业级的音频编辑软件。
    • 提供广泛的音频处理和分析工具,如频谱显示、降噪等。
    • 适合广播、音乐制作和声音修复等专业用途。
  3. Praat

    • 专为语音分析设计的软件。
    • 提供详细的语音特征提取,如基频、共振峰、时长等。
    • 支持脚本编写,适合科研用途。
  4. WaveSurfer

    • 开源的音频处理和分析工具。
    • 支持音频波形和频谱图显示。
    • 提供基本的音频编辑功能。
  5. Sonic Visualiser

    • 专注于音频信号的可视化和分析。
    • 提供频谱图、时间轴、音高跟踪等多种显示模式。
    • 支持Vamp插件扩展功能。

在线音频分析工具

  1. TwistedWave

    • 在线音频编辑和分析工具。
    • 提供基本的录音、编辑和效果处理功能。
    • 支持文件导入和导出,操作简便。
  2. AudioMass

    • 免费的在线音频编辑器。
    • 提供基本的音频剪辑、过滤、频谱显示等功能。
    • 适合快速处理和分析音频文件。
  3. Auphonic

    • 在线音频处理和优化平台。
    • 提供自动化的音量标准化、噪声消除和音质优化功能。
    • 支持批量处理和多平台集成。
  4. Online Tone Generator

    • 提供频率分析、音量测量等功能。
    • 简单易用,适合基础的音频分析和测试。

专业分析和研究平台

  1. MATLAB with Signal Processing Toolbox

    • 强大的信号处理和分析工具。
    • 提供详细的音频信号处理和特征提取功能。
    • 适合科研和工程应用。
  2. Python with LibROSA

    • Python库,用于音频和音乐分析。
    • 提供丰富的音频特征提取和处理工具。
    • 适合开发定制化的音频分析解决方案。
  3. Raven Pro

    • 专业的声音和声音分析软件,主要用于生物声学研究。
    • 提供高分辨率的频谱分析、音高跟踪和时间标注功能。
    • 适合学术研究和复杂音频分析。

语音情感和质量分析平台

  1. OpenSMILE

    • 开源音频特征提取工具包,支持情感识别和音质分析。
    • 被广泛应用于语音情感分析和人机交互研究。
  2. IBM Watson Speech to Text

    • 提供高级语音识别和文本分析功能。
    • 支持语音情感分析和关键词提取。
  3. Google Cloud Speech-to-Text

    • 提供高准确度的语音转文本服务。
    • 支持多种语言和情感分析功能。

这些软件和平台可以根据不同的需求和预算选择使用,既可以进行简单的音频编辑,也可以进行深入的声音分析和研究。

相关文章:

好用的声音分析的软件和网站

有许多软件和网站可以帮助进行声音分析,从专业级的音频处理软件到在线工具,以下是一些推荐: 专业音频分析软件 Audacity 开源且免费的音频编辑和分析工具。提供基本的音频录制、编辑和分析功能。支持多种插件,扩展其功能。 Adob…...

开发情绪识别人工智能时的道德考量

情绪调节人工智能是机器学习领域的最新技术进步之一。尽管它显示出巨大的潜力,但道德问题将影响其采用率和寿命。人工智能开发人员能克服这些问题吗? 什么是情绪识别人工智能? 情绪识别人工智能是一种机器学习模型。它通常依赖于计算机视觉…...

MongoDB:基础语句及练习

一 基本命令 1.显示所有数据库 show dbs show databases 2.进入某个数据库 use 数据库名称 3.显示当前数据库信息 db.stats() 4.显示当前数据库的所有集合 show collections 5.显示当前数据库 db 在 MongoDB 里,数据库和集合都不用手动创建: 当使用“us…...

百度智能云创新业务部总经理李想:发挥AI企业科技创新优势 助力职业教育人才扬帆远航

前言:百度智能云教育行业解决方案作为百度智能云旗下的创新力量,专注于培养“AI教育”领域的新质生产力人才,一直以来备受职业教育领域的关注。在第六届人工智能“职教百强”院校长论坛开幕之际,中教全媒体对话论坛嘉宾百度智能云…...

了解股票沽空及其风险

什么是股票沽空? 股票沽空是一种投资策略,投资者通过借入股票并在市场上卖出,期望在未来以更低的价格买回股票,以赚取价差收益。这一策略在市场下跌时尤为常见,因为投资者可以从股票价格的下跌中获利​。 股票沽空的…...

【Sql Server修改列类型错误信息:对象名依赖于列】

Sql Server修改列类型错误信息:对象名依赖于列 报错信息解决方法测试sql语句 报错信息 修改表中列类型,发生报错如下: [SQL Server]对象DF__Forecast___isCal__4E746892 依赖于 列isCalcFinished。 (5074) [42000] [Microsoft][ODBC Driver…...

【ACM珠海分会,IEEE Fellow加盟,CPS出版】第四届管理科学和软件工程国际学术会议(ICMSSE 2024,7月19-21)

第四届管理科学和软件工程国际学术会议(ICMSSE 2024)由ACM珠海分会,广州番禺职业技术学院主办;全国区块链行业产教融合共同体,AEIC学术交流中心承办,将于2024年7月19-21日于广州召开。 会议旨在为从事管理与软件工程领域的专家学…...

kmeans.fit_predict 和 kmeans.fit有什么区别

KMeans 是 scikit-learn 库中用于执行 K-means 聚类算法的类。fit_predict 和 fit 是该类中的两个方法,的主要区别在于返回的内容和用途。 kmeans.fit: 用途: 用于训练 K-means 模型。输入: 接受一个特征矩阵(通常是二维数组)作为输入。输出:…...

香港优才计划续签难吗?一次性说清楚优才续签要求,不在香港居住也能续签成功!

香港优才计划续签难吗?这个问题对考虑申请优才的人来说,还是挺重要的。我们申请优才,最关注的2个问题,一个是获批,还有一个就是续签了。 毕竟我们费那么大功夫申请优才,可不只是为了一个为期3年的香港临时…...

react获取访问过的路由历史记录

看了下,好像没有很好的解决方案,之前的useHistory现在也用不了了, chatgpt说使用useMatch,也报错 看了下浏览器原生的。本来浏览器就会限制这个histroy的读取,只能获取length https://developer.mozilla.org/zh-CN/…...

基于深度学习的点云降噪

基于深度学习的点云降噪是一种利用深度学习模型处理三维点云数据,以去除噪声并恢复点云的原始形状和细节的方法。点云数据广泛应用于自动驾驶、机器人导航、3D扫描和虚拟现实(VR)等领域,因此高质量的点云数据处理至关重要。以下是…...

数据结构-二叉搜索树与红黑树

4.二叉搜索树 又叫二叉查找树、有序二叉树、排序二叉树。树中任意一个结点,其左子树的每个节点值都要小于该节点,其右子树的每个节点值都要大于该节点 作用:能够进行快速查找、插入、删除操作 4.1 二叉搜索树的时间复杂度 注:二…...

52771-009P 同轴连接器

型号简介 52771-009P是Southwest Microwave的连接器。这款连接器外导体外壳、耦合螺母和电缆夹紧螺母都采用了不锈钢 UNS-S30300 材料。不锈钢具有优异的耐腐蚀性和机械强度,能够保证连接器在各种恶劣环境下都能稳定工作。 型号特点 中心触点、外壳、衬套固定环&am…...

鸿蒙语言基础类库:【@ohos.util.Vector (线性容器Vector)】

线性容器Vector 说明: 本模块首批接口从API version 8开始支持。后续版本的新增接口,采用上角标单独标记接口的起始版本。开发前请熟悉鸿蒙开发指导文档:gitee.com/li-shizhen-skin/harmony-os/blob/master/README.md点击或者复制转到。 Vect…...

使用Python绘制堆积面积图

使用Python绘制堆积面积图 堆积面积图效果代码 堆积面积图 堆积面积图是面积图的一种扩展,通过堆积多个区域展示不同类别数据的累积变化。常用于显示不同部分对整体的贡献。 效果 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-pQbW4F…...

代码还原动态调试之 pstree 乘法变加法

乘法编译后&#xff0c;生成加法汇编&#xff0c;提升CPU执行效率&#xff1b; 406a: 85 ff test %edi,%edi // x ? 0406c: 0f 84 7e 00 00 00 je 40f0 <__sprintf_chkplt0x1980>*/int digits, div;if (x ! 0) {/*4072: 89 fd …...

C++:获取当前可执行核心数(开辟线程)

sysconf(_SC_NPROCESSORS_ONLN) 是一个在 POSIX 兼容系统上广泛使用的函数&#xff0c;它用于获取当前系统上可用的处理器&#xff08;CPU 核心&#xff09;的数量。这个函数是 sysconf 函数的一个特定调用&#xff0c;其中 _SC_NPROCESSORS_ONLN 是一个常量&#xff0c;指定了…...

【简历】吉林某985大学:JAVA实习简历指导,面试通过率相当低

注&#xff1a;为保证用户信息安全&#xff0c;姓名和学校等信息已经进行同层次变更&#xff0c;内容部分细节也进行了部分隐藏 简历说明 这份简历是一个顶级985吉林大学的同学投Java职位的简历。因为学校是顶级985&#xff0c;所以他的大厂简历通过率是比较高的&#xff0c;…...

C#中的MD5摘要算法与哈希算法

文章目录 一、哈希算法基础二、MD5 算法原理三、MD5摘要算法四、哈希算法五、C#实现示例MD5算法示例哈希算法示例字符串MD5值对比 六、总结 一、哈希算法基础 哈希算法是一种单向密码体制&#xff0c;它将任意长度的数据转换成固定长度的字符串。这种转换是不可逆的&#xff0…...

使用 python 构建企业级高可用海量爬虫调度系统

一、引言 在大数据时代&#xff0c;信息的获取与分析成为了企业决策的重要依据。对于营销行业而言&#xff0c;实时抓取和分析竞争对手动态、市场趋势以及用户反馈等数据&#xff0c;是制定有效策略的关键。然而&#xff0c;构建一个高可用的、能够处理海量数据的爬虫调度系统…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢

随着互联网技术的飞速发展&#xff0c;消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁&#xff0c;不仅优化了客户体验&#xff0c;还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用&#xff0c;并…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)

题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...

TCP/IP 网络编程 | 服务端 客户端的封装

设计模式 文章目录 设计模式一、socket.h 接口&#xff08;interface&#xff09;二、socket.cpp 实现&#xff08;implementation&#xff09;三、server.cpp 使用封装&#xff08;main 函数&#xff09;四、client.cpp 使用封装&#xff08;main 函数&#xff09;五、退出方法…...

react更新页面数据,操作页面,双向数据绑定

// 路由不是组件的直接跳转use client&#xff0c;useEffect&#xff0c;useRouter&#xff0c;需3个结合&#xff0c; use client表示客户端 use client; import { Button,Card, Space,Tag,Table,message,Input } from antd; import { useEffect,useState } from react; impor…...

智能体革命:企业如何构建自主决策的AI代理?

OpenAI智能代理构建实用指南详解 随着大型语言模型&#xff08;LLM&#xff09;在推理、多模态理解和工具调用能力上的进步&#xff0c;智能代理&#xff08;Agents&#xff09;成为自动化领域的新突破。与传统软件仅帮助用户自动化流程不同&#xff0c;智能代理能够自主执行工…...

软件工程教学评价

王海林老师您好。 您的《软件工程》课程成功地将宏观的理论与具体的实践相结合。上半学期的理论教学中&#xff0c;您通过丰富的实例&#xff0c;将“高内聚低耦合”、SOLID原则等抽象概念解释得十分透彻&#xff0c;让这些理论不再是停留在纸面的名词&#xff0c;而是可以指导…...

DJango知识-模型类

一.项目创建 在想要将项目创键的目录下,输入cmd (进入命令提示符)在cmd中输入:Django-admin startproject 项目名称 (创建项目)cd 项目名称 (进入项目)Django-admin startapp 程序名称 (创建程序)python manage.py runserver 8080 (运行程序)将弹出的网址复制到浏览器中…...

基于规则的自然语言处理

基于规则的自然语言处理 规则方法形态还原&#xff08;针对英语、德语、法语等&#xff09;中文分词切分歧义分词方法歧义字段消歧方法分词带来的问题 词性标注命名实体分类机器翻译规则方法的问题 规则方法 以规则形式表示语言知识&#xff0c;强调人对语言知识的理性整理&am…...

Selenium4+Python的web自动化测试框架

一、什么是Selenium&#xff1f; Selenium是一个基于浏览器的自动化测试工具&#xff0c;它提供了一种跨平台、跨浏览器的端到端的web自动化解决方案。Selenium主要包括三部分&#xff1a;Selenium IDE、Selenium WebDriver 和Selenium Grid。 Selenium IDE&#xff1a;Firefo…...