当前位置: 首页 > news >正文

【LeetCode】快乐数

目录

  • 一、题目
  • 二、解法
  • 完整代码


一、题目

编写一个算法来判断一个数 n 是不是快乐数。

「快乐数」 定义为:

对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和。
然后重复这个过程直到这个数变为 1,也可能是 无限循环 但始终变不到 1。
如果这个过程 结果为 1,那么这个数就是快乐数。
如果 n 是 快乐数 就返回 true ;不是,则返回 false 。

示例 1:

输入:n = 19
输出:true
解释:
12 + 92 = 82
82 + 22 = 68
62 + 82 = 100
12 + 02 + 02 = 1
示例 2:

输入:n = 2
输出:false

提示:

1 <= n <= 231 - 1


二、解法

简单粗暴的解法,模拟,将出现过的数字放入set中,如果遇到重复的了,就直接返回False为了防止绕圈


完整代码

class Solution:def isHappy(self, n: int) -> bool:man = nst = set()while man not in st:st.add(man)if man == 1:return Trueelse:new_man = 0while man != 0:tmp = man % 10man //= 10new_man += tmp * tmpman = new_manreturn False

相关文章:

【LeetCode】快乐数

目录 一、题目二、解法完整代码 一、题目 编写一个算法来判断一个数 n 是不是快乐数。 「快乐数」 定义为&#xff1a; 对于一个正整数&#xff0c;每一次将该数替换为它每个位置上的数字的平方和。 然后重复这个过程直到这个数变为 1&#xff0c;也可能是 无限循环 但始终变…...

大模型未来发展深度分析

大模型未来发展方向的深度探讨 近年来&#xff0c;人工智能技术的飞速发展&#xff0c;特别是大模型技术的崛起&#xff0c;为全球科技产业带来了前所未有的变革。大模型&#xff0c;以其强大的推理能力、创意生成能力和情绪智能&#xff0c;正在逐步成为推动社会经济发展的核…...

[线性RNN系列] Mamba: S4史诗级升级

前言 iclr24终于可以在openreview上看预印本了 这篇&#xff08;可能是颠覆之作&#xff09;文风一眼c re组出品&#xff1b;效果实在太惊艳了&#xff0c;实验相当完善&#xff0c;忍不住写一篇解读分享分享。 TL;DR &#xff08;overview&#xff09; Structured State-Sp…...

【鸿蒙学习笔记】元服务

官方文档&#xff1a;元服务规格 目录标题 什么是元服务特征第一个元服务-案例介绍创建项目源码启动模拟器启动entry创建卡片出发元服务 什么是元服务 特征 免安装分包预加载老化和更新机制 第一个元服务-案例介绍 创建项目 源码 Entry Component struct WidgetCard {buil…...

LIS+找规律,CF 582B - Once Again...

一、题目 1、题目描述 2、输入输出 2.1输入 2.2输出 3、原题链接 582B - Once Again... 二、解题报告 1、思路分析 考虑朴素做法对T *n的数组求LIS 但是T * n可达1e9 思考一下&#xff0c;最优解无非就是几个循环节拼接&#xff0c;我们最差情况下对sqrt(T)个a[]求LIS即…...

数据赋能(145)——开发:数据拆分——实施过程、应用特点

实施过程 数据拆分的实施过程通常涉及以下几个关键步骤&#xff1a; 确定拆分目标和需求&#xff1a; 明确数据拆分的目的和需求&#xff0c;例如是为了减少数据处理的复杂性、提高查询效率还是为了满足特定的业务需求。根据需求确定拆分后的数据结构和拆分规则。选择拆分方法…...

【漏洞复现】Splunk Enterprise for Windows 任意文件读取漏洞 CVE-2024-36991

声明&#xff1a;本文档或演示材料仅用于教育和教学目的。如果任何个人或组织利用本文档中的信息进行非法活动&#xff0c;将与本文档的作者或发布者无关。 一、漏洞描述 Splunk Enterprise 是一款强大的机器数据管理和分析平台&#xff0c;广泛应用于企业中&#xff0c;用于实…...

FastAPI -- 第一弹

Hello World 经典的 Hello World 安装 pip install fastapi pip install "uvicorn[standard]"main.py from typing import Unionfrom fastapi import FastAPIapp FastAPI()app.get("/") def read_root():return {"Hello": "World"}…...

C++入门基础篇(1)

欢迎大家来到海盗猫鸥的博客—— 断更许久&#xff0c;让我们继续好好学习吧&#xff01; 目录 1.namespace命名空间 命名空间的存在价值&#xff1a; 命名空间的定义&#xff1a; 命名空间的使用&#xff1a; 2.C输入输出函数 使用&#xff1a; 3.缺省参数 4.函数重载…...

基于html开发的在线网址导航在线工具箱源码

基于html开发的在线网址导航在线工具箱源码&#xff0c;将全部文件复制到服务器&#xff0c;入口文件是index.html 如需修改网址&#xff0c;可修改index.html 如需修改关于页面&#xff0c;可修改about里面的index页面 源码下载&#xff1a;https://download.csdn.net/down…...

【密码学】大整数分解问题和离散对数问题

公钥密码体制的主要思想是通过一种非对称性&#xff0c;即正向计算简单&#xff0c;逆向计算复杂的加密算法设计&#xff0c;来解决安全通信。本文介绍两种在密码学领域内最为人所熟知、应用最为广泛的数学难题——大整数分解问题与离散对数问题 一、大整数分解问题 &#xf…...

解析 pdfminer layout.py LAParams类及其应用实例

解析 pdfminer layout.py LAParams类及其应用实例 引言类的定义1. line_overlap2. char_margin3. word_margin4. line_margin5. boxes_flow6. detect_vertical7. all_texts 类的初始化参数验证类的表示总结 引言 在这篇文章中&#xff0c;我们将解析一个叫做 LAParams 的类。这…...

Redis官方可视化管理工具

版权声明 本文原创作者&#xff1a;谷哥的小弟作者博客地址&#xff1a;http://blog.csdn.net/lfdfhl RedisInsight是一个Redis可视化工具&#xff0c;提供设计、开发和优化 Redis 应用程序的功能。RedisInsight分为免费的社区版和一个付费的企业版&#xff0c;免费版具有基本…...

android 固定图片大小

在Android中&#xff0c;固定图片大小可以通过多种方法实现&#xff0c;这些方法主要涉及到ImageView控件的使用、Bitmap类的操作&#xff0c;以及第三方库&#xff08;如Glide&#xff09;的辅助。以下是几种常见的方法&#xff1a; 1. 使用ImageView控件 在Android的布局文…...

操作系统——内存管理(面试准备)

虚拟内存 单片机没有操作系统&#xff0c;每次写完代码&#xff0c;都需要借助工具把程序烧录进去&#xff0c;这样程序才能跑起来。 另外&#xff0c;单片机的CPU是直接操作内存的物理地址。 在这种情况下&#xff0c;想在内存中同时运行两个程序是不可能的&#xff0c;如果第…...

vue3实现vuedraggable实现拖拽到垃圾桶图标位置进行删除

当使用Vue 3和vuedraggable库时&#xff0c;你可以按照以下方式实现拖拽到垃圾桶图标位置进行删除的功能&#xff1a; 首先&#xff0c;确保你已经安装了vuedraggable库。如果没有安装&#xff0c;可以通过以下命令进行安装&#xff1a; vuedraggable 和vue-draggable-plus使…...

MySQL向自增列插入0失败问题

问题 在一次上线时&#xff0c;发现通过脚本添加的状态表中&#xff0c;待提交的状态不正确&#xff0c;本来应该是0&#xff0c;线上是101。 原因 默认情况下&#xff0c;MySQL对应自增列&#xff0c;认为0和null等价&#xff08;因为mysql认为0不是最佳实践不推荐使用&…...

Python:Python基础知识(注释、命名、数据类型、运算符)

.注释 Python有两种注释方法&#xff1a;单行注释和多行注释。单行注释以#开头&#xff0c;多行注释以三个单引号 或三个双引号 """ 开头和结尾。 2.命名规则 命名规则: 大小写字母、数字、下划线和汉字等字符及组合&#xff1b; 注意事项: 大小写敏感、首…...

Protobuf: 大数据开发中的高效数据传输利器

作为一名大数据开发者&#xff0c;我经常需要处理海量的数据传输和存储。在这个过程中&#xff0c;选择一个高效、可靠的数据序列化工具至关重要。今天&#xff0c;我想和大家分享一下我在项目中使用 Protobuf 的经历。 目录 故事背景Protobuf 简介优点&#xff1a; 实战案例示…...

MySQL 面试相关问题

写在前面&#xff1a; 不喜勿喷&#xff0c;暴躁作者又不求你给钱【没办法&#xff0c;遇见的狗喷子太多了&#x1f436;】欢迎大家在评论区留言&#xff0c;指正文章中的信息错误有一些其他相关的问题&#xff0c;可以直接评论区留言&#xff0c;作者看到会及时更新到文章末尾…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

在rocky linux 9.5上在线安装 docker

前面是指南&#xff0c;后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹&#xff0c;并新增内容 3.创建package文件夹...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结&#xff1a; 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析&#xff1a; 实际业务去理解体会统一注…...

3-11单元格区域边界定位(End属性)学习笔记

返回一个Range 对象&#xff0c;只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意&#xff1a;它移动的位置必须是相连的有内容的单元格…...

回溯算法学习

一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用

文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么&#xff1f;1.1.2 感知机的工作原理 1.2 感知机的简单应用&#xff1a;基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

Selenium常用函数介绍

目录 一&#xff0c;元素定位 1.1 cssSeector 1.2 xpath 二&#xff0c;操作测试对象 三&#xff0c;窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四&#xff0c;弹窗 五&#xff0c;等待 六&#xff0c;导航 七&#xff0c;文件上传 …...

C# 表达式和运算符(求值顺序)

求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如&#xff0c;已知表达式3*52&#xff0c;依照子表达式的求值顺序&#xff0c;有两种可能的结果&#xff0c;如图9-3所示。 如果乘法先执行&#xff0c;结果是17。如果5…...