当前位置: 首页 > news >正文

C 语言中的联合(Union)的用途是什么?

🍅关注博主🎗️ 带你畅游技术世界,不错过每一次成长机会!
📙C 语言百万年薪修炼课程 通俗易懂,深入浅出,匠心打磨,死磕细节,6年迭代,看过的人都说好。

分割线

文章目录

  • C 语言中的联合(Union)的用途
  • 一、节省内存空间
  • 二、实现类型转换
  • 三、处理异构数据结构
  • 四、与硬件或特定编程环境交互
  • 五、示例:使用联合实现一个简单的变体类型
  • 六、联合的内存布局和字节对齐
  • 七、联合与结构体的区别
  • 八、联合使用中的注意事项

分割线


C 语言中的联合(Union)的用途

在 C 语言中,联合(Union)是一种特殊的数据类型,它允许在同一段内存空间中存储不同的数据类型。联合的主要用途包括节省内存空间、实现类型转换、处理异构数据结构以及与硬件或特定的编程环境进行交互等。

分割线

一、节省内存空间

在某些情况下,多个变量可能在不同的时间点被使用,但它们不会同时存在。此时,可以使用联合来共享同一块内存,从而节省内存空间。

例如,假设我们有一个程序需要处理两种不同类型的数据:整数和浮点数。如果分别定义两个变量来存储这两种类型的数据,那么将占用较多的内存空间。但如果这两个值不会同时被使用,我们就可以使用联合来节省内存:

union data {int intValue;float floatValue;
};int main() {union data myData;myData.intValue = 10;printf("Integer value: %d\n", myData.intValue);myData.floatValue = 3.14;printf("Float value: %f\n", myData.floatValue);return 0;
}

在上述示例中,myData 联合只占用了足够存储一个整数或一个浮点数的内存空间,而不是分别为整数和浮点数分配独立的内存空间。

分割线

二、实现类型转换

联合可以用于在不同的数据类型之间进行转换,而无需进行显式的类型强制转换操作。

以下是一个简单的示例,展示如何使用联合来实现类型转换:

union conversion {int intType;char charType;
};int main() {union conversion myConv;myConv.intType = 65;printf("Char value: %c\n", myConv.charType);myConv.charType = 'B';printf("Integer value: %d\n", myConv.intType);return 0;
}

在这个例子中,通过将一个整数赋值给 intType,然后读取 charType,实现了从整数到字符的隐式转换。反之亦然。

需要注意的是,这种类型转换方式可能导致未定义的行为,特别是当不同类型的大小和字节顺序不一致时。因此,在实际编程中应谨慎使用。

分割线

三、处理异构数据结构

当需要处理具有不同类型但相关的数据时,联合可以派上用场。

例如,考虑一个数据结构,其中可能包含不同类型的标识字段,如整数标识、字符串标识或枚举标识:

enum idType {INT_ID,STRING_ID,ENUM_ID
};union id {int intId;char stringId[20];enum idType enumId;
};struct dataRecord {union id identifier;// 其他数据成员
};int main() {struct dataRecord record;record.identifier.intId = 100;// 根据不同的情况设置和使用不同类型的标识return 0;
}

在上述示例中,根据具体的情况,可以选择使用联合中的不同成员来表示数据记录的标识符。

分割线

四、与硬件或特定编程环境交互

在某些与硬件接口或特定的编程环境中,联合常用于解析和处理具有特定格式的字节数据。

例如,当从硬件设备读取一个固定长度的字节序列,并需要根据不同的位或字节来解释其含义时,可以使用联合:

union hardwareData {unsigned char bytes[4];int integerValue;float floatValue;
};int main() {union hardwareData receivedData;// 假设从硬件读取了 4 个字节的数据到 receivedData.bytes// 根据具体的协议和格式来解释和使用数据return 0;
}

通过联合,可以根据硬件数据的格式和要求,灵活地以不同的方式解释和处理所接收的数据。

分割线

五、示例:使用联合实现一个简单的变体类型

下面是一个更综合的示例,展示如何使用联合来实现一个简单的变体类型,该类型可以存储整数、浮点数或字符串:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>enum dataType {INT_TYPE,FLOAT_TYPE,STRING_TYPE
};typedef struct variant {enum dataType type;union {int intValue;float floatValue;char *stringValue;} value;
} Variant;// 创建并初始化一个整数类型的变体
Variant *createIntVariant(int value) {Variant *v = (Variant *)malloc(sizeof(Variant));if (v == NULL) {return NULL;}v->type = INT_TYPE;v->value.intValue = value;return v;
}// 创建并初始化一个浮点数类型的变体
Variant *createFloatVariant(float value) {Variant *v = (Variant *)malloc(sizeof(Variant));if (v == NULL) {return NULL;}v->type = FLOAT_TYPE;v->value.floatValue = value;return v;
}// 创建并初始化一个字符串类型的变体
Variant *createStringVariant(const char *value) {Variant *v = (Variant *)malloc(sizeof(Variant));if (v == NULL) {return NULL;}v->type = STRING_TYPE;v->value.stringValue = (char *)malloc(strlen(value) + 1);if (v->value.stringValue == NULL) {free(v);return NULL;}strcpy(v->value.stringValue, value);return v;
}// 打印变体的值
void printVariant(Variant *v) {switch (v->type) {case INT_TYPE:printf("Integer: %d\n", v->value.intValue);break;case FLOAT_TYPE:printf("Float: %f\n", v->value.floatValue);break;case STRING_TYPE:printf("String: %s\n", v->value.stringValue);break;}
}// 释放变体占用的内存
void freeVariant(Variant *v) {if (v == NULL) {return;}switch (v->type) {case STRING_TYPE:free(v->value.stringValue);break;}free(v);
}int main() {Variant *intVar = createIntVariant(42);Variant *floatVar = createFloatVariant(3.14);Variant *stringVar = createStringVariant("Hello, World!");printVariant(intVar);printVariant(floatVar);printVariant(stringVar);freeVariant(intVar);freeVariant(floatVar);freeVariant(stringVar);return 0;
}

在这个示例中,我们定义了一个 Variant 结构体,其中包含一个类型枚举和一个联合。通过不同的创建函数,可以创建不同类型的变体,并使用 printVariant 函数打印其值,最后使用 freeVariant 函数释放内存。

分割线

六、联合的内存布局和字节对齐

联合的内存布局是由其成员中占用最大内存空间的成员决定的。所有成员共享同一块内存区域,并且起始地址相同。

字节对齐会对联合的内存布局产生影响。字节对齐是为了提高内存访问效率,通常按照特定的规则将数据存储在内存中的特定地址上。

例如,如果一个系统的字节对齐要求是 4 字节,而联合的成员分别是一个 1 字节的字符和一个 4 字节的整数,那么联合的内存大小将是 4 字节,并且字符也会从 4 字节的边界开始存储。

#include <stdio.h>union alignExample {char c;int i;
};int main() {printf("Size of union: %zu\n", sizeof(union alignExample));return 0;
}

在不同的编译环境和系统中,字节对齐的规则和大小可能会有所不同。

分割线

七、联合与结构体的区别

联合和结构体在 C 语言中都是复合数据类型,但它们有一些关键的区别:

  1. 内存布局:结构体的每个成员都有自己独立的内存空间,按照声明的顺序依次排列。而联合的所有成员共享同一块内存空间。
  2. 访问方式:在结构体中,可以同时访问和使用所有的成员。但在联合中,在任何给定的时间,只有最后被赋值的成员是有效的和有意义的访问。
  3. 用途:结构体通常用于将不同类型但相关的数据组合在一起,每个成员都有其独立的含义和用途。联合则更适合用于表示在不同时间使用不同类型的数据,或者在不同的情况下对同一块内存进行不同的解释。

分割线

八、联合使用中的注意事项

  1. 数据一致性:由于联合的成员共享内存,对一个成员的赋值可能会覆盖其他成员的值。因此,在使用联合时,必须非常小心,确保在读取一个成员的值时,它是最近被赋值的,并且没有被其他的赋值操作所破坏。

  2. 类型安全:C 语言对联合的类型检查相对较弱,需要程序员自己确保对联合成员的操作是合法和有意义的。不正确的使用可能导致未定义的行为和难以调试的错误。

  3. 可移植性:联合的内存布局和字节对齐可能因编译器和硬件平台而异。因此,在编写依赖于联合具体内存布局的代码时,要注意其可移植性问题。

联合是 C 语言中一个强大但需要谨慎使用的数据类型。


分割线

🎉相关推荐

  • 📙C 语言百万年薪修炼课程 通俗易懂,深入浅出,匠心打磨,死磕细节,6年迭代,看过的人都说好。
  • 🍅博客首页-关注博主🎗️ 带你畅游技术世界,不错过每一次成长机会!
  • 📙CSDN专栏-C语言修炼
  • 📙技术社区-墨松科技

C语言



相关文章:

C 语言中的联合(Union)的用途是什么?

&#x1f345;关注博主&#x1f397;️ 带你畅游技术世界&#xff0c;不错过每一次成长机会&#xff01; &#x1f4d9;C 语言百万年薪修炼课程 通俗易懂&#xff0c;深入浅出&#xff0c;匠心打磨&#xff0c;死磕细节&#xff0c;6年迭代&#xff0c;看过的人都说好。 文章目…...

汽车电子助力转向系统研究

汽车电子助力转向系统研究 摘要 电子助力转向系统&#xff08;Electric Power Steering&#xff0c;EPS&#xff09;是一种利用电动机辅助驾驶员进行车辆转向的系统。相比于传统的液压助力转向系统&#xff0c;EPS具有更高的效率、精确性和可控性。本文将详细探讨EPS的工作原理…...

大数据学习之 scala基础(补充)

scala基础&#xff1a; hello world: 写scala可运行文件的注意事项1、如果一个scala文件要运行&#xff0c;class要改成object2、如果是class&#xff0c;就仅单纯代表一个类&#xff0c;如果是object代表的是单例对象3、scala语法中&#xff0c;一句话结束不需要加分号4、sca…...

正向传播和反向传播

正向传播&#xff08;Forward Propagation&#xff09; 正向传播是指将输入数据通过神经网络&#xff0c;计算出预测值的过程。具体步骤如下&#xff1a; 输入层&#xff1a;接受输入数据。隐藏层&#xff1a;每个隐藏层中的神经元接收上一层的输出&#xff0c;进行加权求和&…...

前端文件下载的方式

方式一&#xff1a;a标签直接下载 <a href"链接" >下载</a>一个文件链接&#xff08;一般是服务器上的某个文件&#xff09;&#xff0c;这个链接一般地址栏输入是预览&#xff0c;不是附件下载 如果想改成附件下载&#xff0c;以下两种方式任选一个均…...

视图库对接系列(GA-T 1400)十六、视图库对接系列(本级)通知(订阅回调)

说明 之前我们实现了订阅接口,其中有一个receiveAddr参数, 这个就是对应的回调的地址。一般情况下对应的是同一个服务。 我们推荐使用http://xxx:xxx/VIID/SubscribeNotifications接口文档 SubscribeNotificationList对象对象如下: 文档中是xml,但实际上目前使用的都是jso…...

Python | Leetcode Python题解之第230题二叉搜索树中第K小的元素

题目&#xff1a; 题解&#xff1a; class AVL:"""平衡二叉搜索树&#xff08;AVL树&#xff09;&#xff1a;允许重复值"""class Node:"""平衡二叉搜索树结点"""__slots__ ("val", "parent&quo…...

Python酷库之旅-第三方库Pandas(018)

目录 一、用法精讲 44、pandas.crosstab函数 44-1、语法 44-2、参数 44-3、功能 44-4、返回值 44-5、说明 44-6、用法 44-6-1、数据准备 44-6-2、代码示例 44-6-3、结果输出 45、pandas.cut函数 45-1、语法 45-2、参数 45-3、功能 45-4、返回值 45-5、说明 4…...

九科bit-Worker RPA 内容学习

入门阶段&#xff0c; 花时间学习和记忆细枝末节&#xff0c;可能会反而分散新手去理解核心逻辑的精力&#xff0c;并且不常用的知识也很容易被遗忘。 简介&#xff1a; 什么是RPA&#xff1f; RPA&#xff08;Robotic Process Automation&#xff0c;机器人流程自动化&#x…...

vscode编译环境配置-golang

1. 支持跳转 如果单测函数上方不显示run test | debug test&#xff0c;需要安装Code Debugger&#xff08;因为以前的go Test Explorer不再被维护了&#xff09; 2. 单测 指定单个用例测试 go test -v run TestXXXdlv 调试 需要安装匹配的go版本和delve版本&#xff08;如…...

【JavaEE】网络编程——UDP

&#x1f921;&#x1f921;&#x1f921;个人主页&#x1f921;&#x1f921;&#x1f921; &#x1f921;&#x1f921;&#x1f921;JavaEE专栏&#x1f921;&#x1f921;&#x1f921; 文章目录 1.数据报套接字(UDP)1.1特点1.2编码1.2.1DatagramSocket1.2.2DatagramPacket…...

JAVA毕业设计147—基于Java+Springboot的手机维修管理系统(源代码+数据库)

基于JavaSpringboot的手机维修管理系统(源代码数据库)147 一、系统介绍 本项目分为用户、管理员、维修员三种角色 1、用户&#xff1a; 注册、登录、新闻公告、售后申请、申请列表、意见反馈、个人信息、密码修改 2、管理员&#xff1a; 用户管理、用户管理、栏目管理、网…...

力扣第228题“汇总区间”

在本篇文章中&#xff0c;我们将详细解读力扣第228题“汇总区间”。通过学习本篇文章&#xff0c;读者将掌握如何遍历和汇总区间&#xff0c;并了解相关的复杂度分析和模拟面试问答。每种方法都将配以详细的解释&#xff0c;以便于理解。 问题描述 力扣第228题“汇总区间”描…...

部署大语言模型并对话

在阿里云的https://developer.aliyun.com/adc/scenario/b105013328814fe995c0f091d708d67d 选择函数计算 设置服务器配置 复制公网地址 这个地址不能直接 在返回应用&#xff0c;创建应用LLM 对话页面 Open WebUI 点击下面的创建应用 部署完成后访问域名 打开访问地址...

WebSocket、socket.io-client

WebSocket WebSocket 是一种网络通信协议&#xff0c;它提供了一个在单个长期持久的 TCP 连接上进行全双工&#xff08;full-duplex&#xff09;通信的通道。 WebSocket 允许客户端和服务器之间进行双向的数据交换&#xff0c;这意味着服务器可以主动向客户端推送数据&#x…...

Maven 仓库

在 Maven 世界中&#xff0c;任何一个依赖、插件或者项目构建的输出&#xff0c;都可以称为 构件 。 坐标和依赖是构件在 Maven 世界中的逻辑表示方式&#xff0c;构件的物理表示方式是文件&#xff0c;Maven 通过仓库来统一管理这些文件。 任何一个构件都有一组坐标唯一标识。…...

给后台写了一个优雅的自定义风格的数据日志上报页面

highlight: atelier-cave-dark 查看后台数据日志是非常常见的场景,经常看到后台的小伙伴从服务器日志复制一段json数据字符串,然后找一个JSON工具网页打开,在线JSON格式化校验。有的时候,一些业务需要展示mqtt或者socket的实时信息展示,如果不做任何修改直接展示一串字符…...

【React Native优质开源项目】

&#x1f308;个人主页: 程序员不想敲代码啊 &#x1f3c6;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家 &#x1f44d;点赞⭐评论⭐收藏 &#x1f91d;希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff0c;让我们共…...

Android 自动更新时间的数字时钟 TextClock

TextClock 继承 TextView &#xff0c;使用方法和 TextView 一样。 它专门用于显示数字时钟&#xff0c;可以自定义显示格式。 只要在布局文件里添加&#xff0c;它会自动更新时间&#xff0c;不需要添加刷新逻辑。 布局文件&#xff0c; <?xml version"1.0"…...

【Linux Git入门】Git的介绍

文章目录 前言git简介git是什么git的作用为什么要学习git安装git总结前言 在现代软件开发中,版本控制系统已经成为了不可或缺的工具。其中,Git是最受欢迎的版本控制系统之一。Git是由Linux的创造者Linus Torvalds在2005年创建的,用于管理Linux内核的开发。Git是一个分布式版…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能

下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能&#xff0c;包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

循环冗余码校验CRC码 算法步骤+详细实例计算

通信过程&#xff1a;&#xff08;白话解释&#xff09; 我们将原始待发送的消息称为 M M M&#xff0c;依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)&#xff08;意思就是 G &#xff08; x ) G&#xff08;x) G&#xff08;x) 是已知的&#xff09;&#xff0…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统&#xff0c;支持多语言对话&#xff08;如 中文&#xff0c;英文&#xff0c;日语&#xff09;&#xff0c;语音情感&#xff08;如 开心&#xff0c;悲伤&#xff09;&#x…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...