StarRocks分布式元数据源码解析
1. 支持元数据表
https://github.com/StarRocks/starrocks/pull/44276/files
核心类:LogicalIcebergMetadataTable,Iceberg元数据表,将元数据的各个字段做成表的列,后期可以通过sql操作从元数据获取字段,这个表的组成字段是DataFile相关的字段
public static LogicalIcebergMetadataTable create(String catalogName, String originDb, String originTable) {return new LogicalIcebergMetadataTable(catalogName,ConnectorTableId.CONNECTOR_ID_GENERATOR.getNextId().asInt(),ICEBERG_LOGICAL_METADATA_TABLE_NAME,Table.TableType.METADATA,builder().columns(PLACEHOLDER_COLUMNS).column("content", ScalarType.createType(PrimitiveType.INT)).column("file_path", ScalarType.createVarcharType()).column("file_format", ScalarType.createVarcharType()).column("spec_id", ScalarType.createType(PrimitiveType.INT)).column("partition_data", ScalarType.createType(PrimitiveType.VARBINARY)).column("record_count", ScalarType.createType(PrimitiveType.BIGINT)).column("file_size_in_bytes", ScalarType.createType(PrimitiveType.BIGINT)).column("split_offsets", ARRAY_BIGINT).column("sort_id", ScalarType.createType(PrimitiveType.INT)).column("equality_ids", ARRAY_INT).column("file_sequence_number", ScalarType.createType(PrimitiveType.BIGINT)).column("data_sequence_number", ScalarType.createType(PrimitiveType.BIGINT)).column("column_stats", ScalarType.createType(PrimitiveType.VARBINARY)).column("key_metadata", ScalarType.createType(PrimitiveType.VARBINARY)).build(),originDb,originTable,MetadataTableType.LOGICAL_ICEBERG_METADATA);
}
2. Iceberg表扫描
https://github.com/StarRocks/starrocks/pull/44313
核心类:StarRocksIcebergTableScan,扫描Iceberg表的实现类,基于Iceberg的上层接口实现,类似Iceberg默认提供的DataTableScan,doPlanFiles中定义实际的元数据文件扫描逻辑
这一块应当属于数据上层扫描逻辑
protected CloseableIterable<FileScanTask> doPlanFiles() {List<ManifestFile> dataManifests = findMatchingDataManifests(snapshot());List<ManifestFile> deleteManifests = findMatchingDeleteManifests(snapshot());boolean mayHaveEqualityDeletes = !deleteManifests.isEmpty() && mayHaveEqualityDeletes(snapshot());boolean loadColumnStats = mayHaveEqualityDeletes || shouldReturnColumnStats();if (shouldPlanLocally(dataManifests, loadColumnStats)) {return planFileTasksLocally(dataManifests, deleteManifests);} else {return planFileTasksRemotely(dataManifests, deleteManifests);}
}
3. Iceberg元数据信息接口
[Feature] Introduce meta spec interface by stephen-shelby · Pull Request #44527 · StarRocks/starrocks · GitHub
核心类:IcebergMetaSpec,Iceberg元数据描述,核心是RemoteMetaSplit的一个List,代表了元数据文件的列表,基于这个做分布式解析
这一块应当属于元数据文件的切片逻辑
public List<RemoteMetaSplit> getSplits() {return splits;
}
4. Iceberg元数据扫描节点
https://github.com/StarRocks/starrocks/pull/44581
核心类:IcebergMetadataScanNode,Iceberg元数据的扫描节点,袭乘自PlanNode类,主要是把上节的RemoteMetaSplit放到StarRocks的执行结构当中
这一块属于Iceberg逻辑向StarRocks逻辑的中间转换层
private void addSplitScanRangeLocations(RemoteMetaSplit split) {TScanRangeLocations scanRangeLocations = new TScanRangeLocations();THdfsScanRange hdfsScanRange = new THdfsScanRange();hdfsScanRange.setUse_iceberg_jni_metadata_reader(true);hdfsScanRange.setSerialized_split(split.getSerializeSplit());hdfsScanRange.setFile_length(split.length());hdfsScanRange.setLength(split.length());// for distributed schedulerhdfsScanRange.setFull_path(split.path());hdfsScanRange.setOffset(0);TScanRange scanRange = new TScanRange();scanRange.setHdfs_scan_range(hdfsScanRange);scanRangeLocations.setScan_range(scanRange);TScanRangeLocation scanRangeLocation = new TScanRangeLocation(new TNetworkAddress("-1", -1));scanRangeLocations.addToLocations(scanRangeLocation);result.add(scanRangeLocations);
}
5. Iceberg元数据读取
https://github.com/StarRocks/starrocks/pull/44632
核心类:IcebergMetadataScanner,这个应该是Iceberg元数据的实际读取类,实现自StarRocks的ConnectorScanner
ConnectorScanner是StarRocks的设计的介于C++-based的BE和Java-based的大数据组件之间的JNI抽象中间层,可以直接复用Java SDK,规避了对BE代码的侵入以及使用C++访问大数据存储的诸多不便
这一块属于时实际元数据文件读取的Java侧代码

public int getNext() throws IOException {try (ThreadContextClassLoader ignored = new ThreadContextClassLoader(classLoader)) {int numRows = 0;for (; numRows < getTableSize(); numRows++) {if (!reader.hasNext()) {break;}ContentFile<?> file = reader.next();for (int i = 0; i < requiredFields.length; i++) {Object fieldData = get(requiredFields[i], file);if (fieldData == null) {appendData(i, null);} else {ColumnValue fieldValue = new IcebergMetadataColumnValue(fieldData);appendData(i, fieldValue);}}}return numRows;} catch (Exception e) {close();LOG.error("Failed to get the next off-heap table chunk of iceberg metadata.", e);throw new IOException("Failed to get the next off-heap table chunk of iceberg metadata.", e);}
}
这一块目前没有找到Java侧的上层调用,应该在C++中调用,如下,其构造类是在C++中的
// ---------------iceberg metadata jni scanner------------------
std::unique_ptr<JniScanner> create_iceberg_metadata_jni_scanner(const JniScanner::CreateOptions& options) {const auto& scan_range = *(options.scan_range);;const auto* hdfs_table = dynamic_cast<const IcebergMetadataTableDescriptor*>(options.hive_table);std::map<std::string, std::string> jni_scanner_params;jni_scanner_params["required_fields"] = hdfs_table->get_hive_column_names();jni_scanner_params["metadata_column_types"] = hdfs_table->get_hive_column_types();jni_scanner_params["serialized_predicate"] = options.scan_node->serialized_predicate;jni_scanner_params["serialized_table"] = options.scan_node->serialized_table;jni_scanner_params["split_info"] = scan_range.serialized_split;jni_scanner_params["load_column_stats"] = options.scan_node->load_column_stats ? "true" : "false";const std::string scanner_factory_class = "com/starrocks/connector/iceberg/IcebergMetadataScannerFactory";return std::make_unique<JniScanner>(scanner_factory_class, jni_scanner_params);
}
6. 元数据收集任务
https://github.com/StarRocks/starrocks/pull/44679/files
核心类:IcebergMetadataCollectJob,Iceberg元数据的收集类,实现自MetadataCollectJob,目前看就是通过执行SQL语句,从前文的LogicalIcebergMetadataTable表当中获取数据
这一块属于最终的元数据收集
private static final String ICEBERG_METADATA_TEMPLATE = "SELECT content" + // INTEGER", file_path" + // VARCHAR", file_format" + // VARCHAR", spec_id" + // INTEGER", partition_data" + // BINARY", record_count" + // BIGINT", file_size_in_bytes" + // BIGINT", split_offsets" + // ARRAY<BIGINT>", sort_id" + // INTEGER", equality_ids" + // ARRAY<INTEGER>", file_sequence_number" + // BIGINT", data_sequence_number " + // BIGINT", column_stats " + // BINARY", key_metadata " + // BINARY"FROM `$catalogName`.`$dbName`.`$tableName$logical_iceberg_metadata` " +"FOR VERSION AS OF $snapshotId " +"WHERE $predicate'";
7. 流程梳理

1. IcebergMetadataCollectJob的调用
IcebergMetadataCollectJob -> StarRocksIcebergTableScan.planFileTasksRemotely -> StarRocksIcebergTableScan.doPlanFiles -> 由Iceberg定义的TableScan流程触发
2. StarRocksIcebergTableScan的构建
StarRocksIcebergTableScan -> IcebergCatalog.getTableScan -> IcebergMetadata.collectTableStatisticsAndCacheIcebergSplit -> prepareMetadata()和triggerIcebergPlanFilesIfNeeded()
prepareMetadata()线路由PrepareCollectMetaTask任务触发,其执行逻辑中调用了prepareMetadata()接口。PrepareCollectMetaTask是OptimizerTask的子类,属于StarRocks优化器的一环,在Optimizer类执行优化的时候会。这一块属于CBO优化,默认是false,没找到设置成true的地方,目前应该没有启用
triggerIcebergPlanFilesIfNeeded()路线有几个调用的地方,主路线应该是getRemoteFileInfos(),其他两个看内容属于统计信息之类的信息收集
IcebergMetadata.getRemoteFileInfos -> IcebergScanNode.setupScanRangeLocations -> PlanFragmentBuilder.visitPhysicalIcebergScan -> PhysicalIcebergScanOperator
这一条调用链最终源头到PhysicalIcebergScanOperator,这个应当是IcebergScanNode经过SQL计划转换后的实际执行节点类
3. 元数据扫描
IcebergMetaSpec -> IcebergMetadata.getSerializedMetaSpec -> MetadataMgr.getSerializedMetaSpec -> IcebergMetadataScanNode.setupScanRangeLocations -> PlanFragmentBuilder.visitPhysicalIcebergMetadataScan -> PhysicalIcebergMetadataScanOperator
元数据扫描这一块源头最终走到PhysicalIcebergMetadataScanOperator,也就是IcebergMetadataScanNode对应的执行类
4. 元数据扫描和数据扫描的逻辑关系
目前整体流程在最上层就差PhysicalIcebergMetadataScanOperator和PhysicalIcebergScanOperator的逻辑关系,这个逻辑在StarRocks的SQL到执行计划的转换过程当中
往上追踪到BackendSelectorFactory,注意这里有两个扫描节点的分配策略:LocalFragmentAssignmentStrategy、RemoteFragmentAssignmentStrategy。根据类的说明,最左节点为scanNode的时候,使用LocalFragmentAssignmentStrategy,它首先将扫描范围分配给 worker,然后将分配给每个 worker 的扫描范围分派给片段实例
在LocalFragmentAssignmentStrategy的assignFragmentToWorker当中可以看到入参包含很多scanNode,追踪上层到CoordinatorPreprocessor,scanNode的来源是StarRocks的DAG图。这之后的源头就涉及到任务解析和DAG图的顺序构建,应当是先扫描元数据再扫描数据这样构建
for (ExecutionFragment execFragment : executionDAG.getFragmentsInPostorder()) {fragmentAssignmentStrategyFactory.create(execFragment, workerProvider).assignFragmentToWorker(execFragment);
}
8. 代码解析
1. 元数据扫描
-
LogicalIcebergMetadataTable
首先从PhysicalIcebergMetadataScanOperator出发,访问者模式调用接口accept,走到PlanFragmentBuilder.visitPhysicalIcebergMetadataScan
这里首先跟LogicalIcebergMetadataTable关联了起来,这里PhysicalIcebergMetadataScanOperator里包含的表是LogicalIcebergMetadataTable表
LogicalIcebergMetadataTable的初始创建根据调用链追踪应当由CatalogMgr.createCatalog触发
PhysicalIcebergMetadataScanOperator node = (PhysicalIcebergMetadataScanOperator) optExpression.getOp();LogicalIcebergMetadataTable table = (LogicalIcebergMetadataTable) node.getTable();
-
IcebergMetadataScanNode
中间经历一些列的设置,之后构建了IcebergMetadataScanNode
IcebergMetadataScanNode metadataScanNode =new IcebergMetadataScanNode(context.getNextNodeId(), tupleDescriptor,"IcebergMetadataScanNode", node.getTemporalClause());
构建之后调用了setupScanRangeLocations,走到了IcebergMetadataScanNode的类逻辑,首先获取元数据文件的分片信息
IcebergMetaSpec serializedMetaSpec = GlobalStateMgr.getCurrentState().getMetadataMgr().getSerializedMetaSpec(catalogName, originDbName, originTableName, snapshotId, icebergPredicate).cast();
-
IcebergMetadata
这段逻辑跟IcebergMetadata关联了起来,调用其getSerializedMetaSpec接口,接口中就是获取Iceberg的元数据文件,中间经历了一定的过滤
List<ManifestFile> dataManifests = snapshot.dataManifests(nativeTable.io());List<ManifestFile> matchingDataManifests = filterManifests(dataManifests, nativeTable, predicate);
for (ManifestFile file : matchingDataManifests) {remoteMetaSplits.add(IcebergMetaSplit.from(file));
}
获取分片之后就是按StarRocks的扫描结构组装TScanRangeLocations,最终在实际执行时分布式分配解析
private void addSplitScanRangeLocations(RemoteMetaSplit split) {TScanRangeLocations scanRangeLocations = new TScanRangeLocations();THdfsScanRange hdfsScanRange = new THdfsScanRange();hdfsScanRange.setUse_iceberg_jni_metadata_reader(true);hdfsScanRange.setSerialized_split(split.getSerializeSplit());hdfsScanRange.setFile_length(split.length());hdfsScanRange.setLength(split.length());// for distributed schedulerhdfsScanRange.setFull_path(split.path());hdfsScanRange.setOffset(0);TScanRange scanRange = new TScanRange();scanRange.setHdfs_scan_range(hdfsScanRange);scanRangeLocations.setScan_range(scanRange);TScanRangeLocation scanRangeLocation = new TScanRangeLocation(new TNetworkAddress("-1", -1));scanRangeLocations.addToLocations(scanRangeLocation);result.add(scanRangeLocations);
}
-
PlanFragment
visitPhysicalIcebergMetadataScan接口最终组装的是一个PlanFragment,这大体类似于Spark的stage,是物理执行计划的计划块
PlanFragment fragment =new PlanFragment(context.getNextFragmentId(), metadataScanNode, DataPartition.RANDOM);
context.getFragments().add(fragment);
return fragment
-
IcebergMetadataScanner
IcebergMetadataScanner由于其调用逻辑来自于C++的代码,暂未梳理其逻辑,但是假定其执行了,可以看其效果,主要在getNext()接口中读取数据
可以看到其读取后的数据结构是ContentFile,是Iceberg中DataFile的上层父类
ContentFile<?> file = reader.next();
for (int i = 0; i < requiredFields.length; i++) {Object fieldData = get(requiredFields[i], file);if (fieldData == null) {appendData(i, null);} else {ColumnValue fieldValue = new IcebergMetadataColumnValue(fieldData);appendData(i, fieldValue);}
}
主要在appendData接口当中,向表添加数据,可以看到这里设置了一个offHeapTable
offHeapTable是 StarRocks 中的一个特殊表类型,简单来说就是在堆外内存中建立一个表结构,将数据对应存储到堆外内存,之后可以以表形式去访问
protected void appendData(int index, ColumnValue value) {offHeapTable.appendData(index, value);
}
2. 数据扫描中的元数据解析
首先同样到PlanFragmentBuilder.visitPhysicalIcebergScan,流程与visitPhysicalIcebergMetadataScan类似
首先是这里的表是数据表
Table referenceTable = node.getTable();
context.getDescTbl().addReferencedTable(referenceTable);
TupleDescriptor tupleDescriptor = context.getDescTbl().createTupleDescriptor();
tupleDescriptor.setTable(referenceTable);// set slot
prepareContextSlots(node, context, tupleDescriptor);
之后是IcebergScanNode
IcebergScanNode icebergScanNode =new IcebergScanNode(context.getNextNodeId(), tupleDescriptor, "IcebergScanNode",equalityDeleteTupleDesc);
IcebergScanNode这里核心是调用setupScanRangeLocations
icebergScanNode.setupScanRangeLocations(context.getDescTbl());
最终同样封装成PlanFragment
PlanFragment fragment =new PlanFragment(context.getNextFragmentId(), icebergScanNode, DataPartition.RANDOM);
context.getFragments().add(fragment);
return fragment;
-
IcebergScanNode
在setupScanRangeLocations当中,有一个操作是getRemoteFileInfos,这个就是获取数据文件信息,因此内部包含了元数据解析的部分
List<RemoteFileInfo> splits = GlobalStateMgr.getCurrentState().getMetadataMgr().getRemoteFileInfos(catalogName, icebergTable, null, snapshotId, predicate, null, -1);
-
IcebergMetadata
getRemoteFileInfos是在IcebergMetadata当中,会调用triggerIcebergPlanFilesIfNeeded,看接口名字可以明确这是用来触发Iceberg的元数据解析的,最终走到了collectTableStatisticsAndCacheIcebergSplit
private void triggerIcebergPlanFilesIfNeeded(IcebergFilter key, IcebergTable table, ScalarOperator predicate,long limit, Tracers tracers, ConnectContext connectContext) {if (!scannedTables.contains(key)) {tracers = tracers == null ? Tracers.get() : tracers;try (Timer ignored = Tracers.watchScope(tracers, EXTERNAL, "ICEBERG.processSplit." + key)) {collectTableStatisticsAndCacheIcebergSplit(table, predicate, limit, tracers, connectContext);}}
}
collectTableStatisticsAndCacheIcebergSplit当中获取了TableScan,这里的Scan就是StarRocksIcebergTableScan
TableScan scan = icebergCatalog.getTableScan(nativeTbl, new StarRocksIcebergTableScanContext(catalogName, dbName, tableName, planMode(connectContext), connectContext)).useSnapshot(snapshotId).metricsReporter(metricsReporter).planWith(jobPlanningExecutor);
-
StarRocksIcebergTableScan
之后走scan.planFiles(),这个中间会基于Iceberg的逻辑进行调用
CloseableIterable<FileScanTask> fileScanTaskIterable = TableScanUtil.splitFiles(scan.planFiles(), scan.targetSplitSize());
Icberg的逻辑中planFiles最终会调用TableScan的doPlanFiles,这里调用的就是StarRocksIcebergTableScan的实现接口,根据场景有本地和远程的调用方式
if (shouldPlanLocally(dataManifests, loadColumnStats)) {return planFileTasksLocally(dataManifests, deleteManifests);
} else {return planFileTasksRemotely(dataManifests, deleteManifests);
}
Iceberg应当是使用的planFileTasksRemotely,内部会构建IcebergMetadataCollectJob
MetadataCollectJob metadataCollectJob = new IcebergMetadataCollectJob(catalogName, dbName, tableName, TResultSinkType.METADATA_ICEBERG, snapshotId(), icebergSerializedPredicate);metadataCollectJob.init(connectContext.getSessionVariable());long currentTimestamp = System.currentTimeMillis();
String threadNamePrefix = String.format("%s-%s-%s-%d", catalogName, dbName, tableName, currentTimestamp);
executeInNewThread(threadNamePrefix + "-fetch_result", metadataCollectJob::asyncCollectMetadata);
-
MetadataExecutor执行
IcebergMetadataCollectJob的执行在MetadataExecutor当中,就是基本的SQL执行,这里是异步的
public void asyncExecuteSQL(MetadataCollectJob job) {ConnectContext context = job.getContext();context.setThreadLocalInfo();String sql = job.getSql();ExecPlan execPlan;StatementBase parsedStmt;try {parsedStmt = SqlParser.parseOneWithStarRocksDialect(sql, context.getSessionVariable());execPlan = StatementPlanner.plan(parsedStmt, context, job.getSinkType());} catch (Exception e) {context.getState().setError(e.getMessage());return;}this.executor = new StmtExecutor(context, parsedStmt);context.setExecutor(executor);context.setQueryId(UUIDUtil.genUUID());context.getSessionVariable().setEnableMaterializedViewRewrite(false);LOG.info("Start to execute metadata collect job on {}.{}.{}", job.getCatalogName(), job.getDbName(), job.getTableName());executor.executeStmtWithResultQueue(context, execPlan, job.getResultQueue());
}
相关文章:
StarRocks分布式元数据源码解析
1. 支持元数据表 https://github.com/StarRocks/starrocks/pull/44276/files 核心类:LogicalIcebergMetadataTable,Iceberg元数据表,将元数据的各个字段做成表的列,后期可以通过sql操作从元数据获取字段,这个表的组成…...
阅读笔记——《Fuzz4All: Universal Fuzzing with Large Language Models》
【参考文献】Xia C S, Paltenghi M, Le Tian J, et al. Fuzz4all: Universal fuzzing with large language models[C]//Proceedings of the IEEE/ACM 46th International Conference on Software Engineering. 2024: 1-13.【注】本文仅为作者个人学习笔记,如有冒犯&…...
【C++】使用gtest做单元测试框架写单元测试
本文主要介绍在将gtest框架引入到项目里过程中遇到的问题。 我的需求如下: 用CMake构建项目。我要写一些测试程序验证某些功能,但是不想每一个测试都新建一个main函数。 因为新建一个main函数就要在CMakeList.txt里增加一个project,非常不方便。 于是我搜了下,C++里有没…...
Java类与对象
类是对现实世界中实体的抽象,是对一类事物的描述。 类的属性位置在类的内部、方法的外部。 类的属性描述一个类的一些可描述的特性,比如人的姓名、年龄、性别等。 [public] [abstract|final] class 类名 [extends父类] [implements接口列表] { 属性声…...
xlwings 链接到 指定sheet 从别的 excel 复制 sheet 到指定 sheet
重点 可以参考 宏录制 cell sheet.range(G4)cell.api.Hyperlinks.Add(Anchorcell.api, Address"", SubAddress"001-000-02301!A1")def deal_excel(self):with xw.App(visibleTrue) as app:wb app.books.open(self.summary_path, update_linksFalse)sheet…...
风光摄影:相机设置和镜头选择
写在前面 博文内容为《斯科特凯尔比的风光摄影手册》读书笔记整理涉及在风景拍摄中一些相机设置,镜头选择的建议对小白来讲很实用,避免拍摄一些过曝或者过暗的风景照片理解不足小伙伴帮忙指正 😃,生活加油 99%的焦虑都来自于虚度时间和没有好…...
python制作甘特图的基本知识(附Demo)
目录 前言1. matplotlib2. plotly 前言 甘特图是一种常见的项目管理工具,用于表示项目任务的时间进度 直观地看到项目的各个任务在时间上的分布和进度 常用的绘制甘特图的工具是 matplotlib 和 plotly 主要以Demo的形式展示 1. matplotlib 功能强大的绘图库&a…...
javascript设计模式总结
参考 通过设计模式可以增加代码的可重用性、可扩展性、可维护性 设计模式五大设计原则 单一职责:一个程序只需要做好一件事,如果结构过于复杂就拆分开,保证每个部分独立 开放封闭原则:对扩展开放,对修改封闭。增加需…...
gpt-4o看图说话-根据图片回答问题
问题:中国的人口老龄化究竟有多严重? 代码下实现如下:(直接调用openai的chat接口) import os import base64 import requests def encode_image(image_path): """ 对图片文件进行 Base64 编码 输入…...
【MySQL】7.MySQL 的内置函数
MySQL的内置函数 一.日期函数二.字符串函数三.数学函数四.其它函数 一.日期函数 函数名称说明current_date()当前日期current_time()当前时间current_timestamp当前时间戳(日期时间)date(datetime)截取 datetime 的日期部分date_add(date, interval d_value_type)给 date 添加…...
爬虫:Sentry-Span参数逆向
在抓某眼查数据太过频繁时会出现极验的验证码。极验的教程有很多,主要是发现在这里获取验证码的时候需要携带参数Sentry-Span。在这里记录一下逆向的主要过程,直接上补环境的代码。 window global; location {}; my_log console.log;(function () {l…...
音视频入门基础:H.264专题(12)——FFmpeg源码中通过SPS属性计算视频分辨率的实现
一、引言 在上一节《音视频入门基础:H.264专题(11)——计算视频分辨率的公式》中,讲述了通过SPS中的属性计算H.264编码的视频的分辨率的公式。本文讲解FFmpeg源码中计算视频分辨率的实现。 二、FFmpeg源码中计算视频分辨率的实现…...
基于颜色模型和边缘检测的火焰识别FPGA实现,包含testbench和matlab验证程序
目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 (完整程序运行后无水印) 将FPGA仿真结果导入到matlab显示结果: 测试样本1 测试样本2 测试样本3 2.算法运行软件版本 vivado2019.2 …...
golang json反序列化科学计数法的坑
问题背景 func CheckSign(c *gin.Context, signKey string, singExpire int) (string, error) {r : c.Requestvar formParams map[string]interface{}if c.Request.Body ! nil {bodyBytes, _ : io.ReadAll(c.Request.Body)defer c.Request.Body.Close()if len(bodyBytes) >…...
罗技K380无线键盘及鼠标:智慧互联,一触即通
目录 1. 背景2. K380无线键盘连接电脑2.1 键盘准备工作2.2 电脑配置键盘的连接 3. 无线鼠标的连接3.1 鼠标准备工作3.2 电脑配置鼠标的连接 1. 背景 有一阵子经常使用 ipad,但是对于我这个习惯于键盘打字的人来说,慢慢在 ipad 上打字,实在是…...
卸载wps office的几种方法收录
第一种方法: 1.打开【任务管理器】,找到相关程序,点击【结束任务】。任务管理器可以通过左下角搜索找到。 2.点击【开始】-【设置】-【应用】-下拉找到WPS应用,右键卸载,不保留软件配置 …...
SpringCloud第一篇Docker基础
文章目录 一、常见命令二、数据卷三、数据挂载四、自定义镜像五、网络 一、常见命令 Docker最常见的命令就是操作镜像、容器的命令,详见官方文档: https://docs.docker.com/ 需求: 在DockerHub中搜索Nginx镜像,查看镜像的名称 …...
从零开始学习PX4源码3(如何上传官网源码到自己的仓库中)
目录 文章目录 目录摘要1.将PX4源码上传至腾讯工蜂2.从腾讯工蜂克隆源码到本地ubuntu3.如何查看自己源码的版本信息 摘要 本节主要记录从零开始学习PX4源码3(如何上传官网源码到自己的仓库中)及如何查看PX4的固件版本信息,欢迎批评指正! PX4源码版本V1.…...
Docker Compose 启动容器例子
Docker Compose 启动容器例子 Docker Compose 文件 (docker-compose.yml) version: 3.8services:web:image: nginx:latestports:- "8080:80"volumes:- ./html:/usr/share/nginx/htmlnetworks:- webnetdb:image: mysql:latestenvironment:MYSQL_ROOT_PASSWORD: exam…...
守护服务之门:Eureka中分布式认证与授权的实现策略
守护服务之门:Eureka中分布式认证与授权的实现策略 引言 在微服务架构中,服务间的通信安全至关重要。Eureka作为Netflix开源的服务发现框架,虽然本身提供了服务注册与发现的功能,但并不直接提供认证与授权机制。为了实现服务的分…...
【力扣数据库知识手册笔记】索引
索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...
.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...
页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...
OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
Pinocchio 库详解及其在足式机器人上的应用
Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库,专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性,并提供了一个通用的框架&…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...
Java毕业设计:WML信息查询与后端信息发布系统开发
JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发,实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构,服务器端使用Java Servlet处理请求,数据库采用MySQL存储信息࿰…...
无人机侦测与反制技术的进展与应用
国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...
