当前位置: 首页 > news >正文

数学建模中的辅助变量、中间变量、指示变量

在数学建模中,除了决策变量外,还有一些其他类型的变量,如中间变量、辅助变量和指示变量。每种变量在模型中都有特定的用途和意义。以下是对这些变量的详细解释:

1. 决策变量(Decision Variables)

  • 定义:决策变量是模型中需要优化的变量,它们代表了决策者可以控制的量。
  • 用途:决策变量是数学模型的核心,通过优化这些变量来达到目标(如最小化成本或最大化利润)。
  • 示例:
    • 在生产计划问题中,决策变量可以是每种产品的生产数量。
    • 在运输问题中,决策变量可以是每条运输路径上的货物数量。

2. 中间变量(Intermediate Variables)

  • 定义:中间变量是模型中用于计算的变量,它们通常是决策变量的函数,用于简化模型的表达或计算。

  • 用途:中间变量帮助分解复杂的计算过程,使模型更易于理解和求解。

  • 示例:

    • 在生产计划问题中,中间变量可以是总生产成本,它是各产品生产数量和单位成本的乘积之和。
    • 在网络流问题中,中间变量可以是某条路径上的总流量,它是各段流量的和。

3. 辅助变量(Auxiliary Variables)

  • 定义:辅助变量是模型中引入的额外变量,用于简化约束条件或目标函数的表达。
  • 用途:辅助变量可以帮助将复杂的非线性约束或目标函数转化为线性形式,便于求解。
  • 示例:
    • 在线性规划中,辅助变量可以用于将绝对值函数转化为线性形式。
    • 在整数规划中,辅助变量可以用于表示某些逻辑条件或约束。

4. 指示变量(Indicator Variables)

  • 定义:指示变量(也称为二进制变量或0-1变量)是取值为0或1的变量,用于表示某种状态或决策的存在与否。
  • 用途:指示变量常用于表示是否选择某个选项、是否满足某个条件等。
  • 示例:
    • 在设施选址问题中,指示变量可以表示某个设施是否被选址。
    • 在项目调度问题中,指示变量可以表示某个任务是否在某个时间段内执行。
      示例

示例

假设我们有一个生产计划问题,需要最小化生产成本,同时满足需求和资源限制。我们可以定义以下变量:

  • 决策变量: x i x_i xi,生产第 i i i种产品的数量。
  • 中间变量:总生产成本 TotalCost \text{TotalCost} TotalCost,计算公式为 TotalCost = ∑ i c i x i \text{TotalCost} = \sum_{i} c_i x_i TotalCost=icixi,其中 c i c_i ci是第 i i i种产品的单位成本。
  • 辅助变量: y i y_i yi:辅助变量,用于将非线性约束转化为线性形式。例如,如果我们有一个约束 ∣ x i − d i ∣ ≤ M |x_i - d_i| \leq M xidiM,可以引入辅助变量 y i y_i yi 使得 y i ≥ x i − d i y_i \geq x_i - d_i yixidi y i ≥ d i − x i y_i \geq d_i - x_i yidixi,并添加约束 y i ≤ M y_i \leq M yiM
    指示变量: z i z_i zi:指示变量,表示是否生产第 i i i 种产品。 z i z_i zi取值为0或1。如果 z i = 1 z_i = 1 zi=1,则生产第 i i i 种产品;如果 z i = 0 z_i = 0 zi=0,则不生产第 i i i 种产品。

综合上述变量,我们可以构建一个数学模型:

目标函数:
min ⁡ TotalCost = ∑ i c i x i \min \text{TotalCost} = \sum_{i} c_i x_i minTotalCost=icixi

约束条件:

  1. 需求约束: x i ≥ d i x_i \geq d_i xidi
  2. 资源约束: ∑ i r i x i ≤ R \sum_{i} r_i x_i \leq R irixiR
  3. 辅助变量约束: y i ≥ x i − d i , y i ≥ d i − x i , y i ≤ M y_i \geq x_i - d_i ,y_i \geq d_i - x_i ,y_i \leq M yixidiyidixiyiM
  4. 指示变量约束: x i ≤ M z i x_i \leq M z_i xiMzi,其中 M 是一个足够大的常数

通过这种方式,我们可以使用不同类型的变量来构建和优化数学模型。每种变量在模型中都有特定的用途和意义,帮助我们更好地表达和求解实际问题。

相关文章:

数学建模中的辅助变量、中间变量、指示变量

在数学建模中,除了决策变量外,还有一些其他类型的变量,如中间变量、辅助变量和指示变量。每种变量在模型中都有特定的用途和意义。以下是对这些变量的详细解释: 1. 决策变量(Decision Variables) 定义&am…...

python的seek()和tell()

seek() seek() 是用来在文件中移动指针位置的方法。它的作用是将文件内部的当前位置设置为指定的位置。 seek(offset, whence) 参数说明 offset: 这是一个整数值,表示相对于起始位置的偏移量。如果是正数,表示向文件末尾方向移动;如果是负…...

Go泛型详解

引子 如果我们要写一个函数分别比较2个整数和浮点数的大小&#xff0c;我们就要写2个函数。如下&#xff1a; func Min(x, y float64) float64 {if x < y {return x}return y }func MinInt(x, y int) int {if x < y {return x}return y }2个函数&#xff0c;除了数据类…...

【每日一练】python之sum()求和函数实例讲解

在Python中&#xff0c; sum()是一个内置函数&#xff0c;用于计算可迭代对象&#xff08;如列表、元组等&#xff09;中所有元素的总和。如下实例&#xff1a; """ 收入支出统计小程序 知识点:用户输入获取列表元素添加sum()函数&#xff0c;统计作用 "&…...

打造智慧校园德育管理,提升学生操行基础分

智慧校园的德育管理系统内嵌的操行基础分功能&#xff0c;是对学生日常行为规范和道德素养进行量化评估的一个创新实践。该功能通过将抽象的道德品质转化为具体可量化的指标&#xff0c;如遵守纪律、尊师重道、团结协作、爱护环境及参与集体活动的积极性等&#xff0c;为每个学…...

自定义函数---随机数系列函数

大家有没有发现平常在写随机数的时候&#xff0c;需要引入很多的头文件&#xff0c;然后还需要用一些复杂的函数&#xff0c;大家可能不太习惯&#xff0c;于是我就制作了一个头文件 // random_number.h #ifndef RANDOM_NUMBER_H // 预处理指令&#xff0c;防止头文件被重复包含…...

一文了解5G新通话技术演进与业务模型

5G新通话简介 5G新通话&#xff0c;也被称为VoNR&#xff0c;是基于R16及后续协议产生的一种增强型语音通话业务。 它在IMS网络里新增数据通道&#xff08;Data Channel&#xff09;&#xff0c;承载通话时的文本、图片、涂鸦、菜单等信息。它能在传统话音业务基础上提供更多服…...

视频使用操作说明书-T80002系列视频编码器如何对接海康NVR硬盘录像机,包括T80002系列高清HDMI编码器、4K超高清HDMI编码器

视频使用操作说明书-T80002系列视频编码器如何对接海康NVR硬盘录像机&#xff0c;包括T80002系列高清HDMI编码器、4K超高清HDMI编码器。 视频使用操作说明书-T80002系列视频编码器如何对接海康NVR硬盘录像机&#xff0c;包括T80002系列高清HDMI编码器、4K超高清HDMI编码器 同三…...

el-input-number计数器change事件校验数据,改变绑定数据值后change方法失效问题的原因及解决方法

在change事件中如果对el-input-number绑定的数据进行更改&#xff0c;会出现change事件失效的问题 试过&#xff1a;this.$set()及赋值等方法&#xff0c;都无法解决 解决方法&#xff1a;用$nextTick函数对绑定值进行更改&#xff08; this.$nextTick(() > { this.绑定…...

将vue项目整合到springboot项目中并在阿里云上运行

第一步&#xff0c;使用springboot中的thymeleaf模板引擎 导入依赖 <!-- thymeleaf 模板 --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-thymeleaf</artifactId></dependency> 在r…...

AC修炼计划(AtCoder Regular Contest 179)A~C

A - Partition A题传送门 这道题不难发现&#xff0c;如果数字最终的和大于等于K&#xff0c;我们可以把这个原数列从大到小排序&#xff0c;得到最终答案。 如果和小于K&#xff0c;则从小到大排序&#xff0c;同时验证是否符合要求。 #pragma GCC optimize(3) //O2优化开启…...

开发编码规范笔记

前言 &#xff08;1&#xff09;该博客仅用于个人笔记 格式转换 &#xff08;1&#xff09;查看是 LF 行尾还是CRLF 行尾。 # 单个文件&#xff0c;\n 表示 LF 行尾。\r\n 表示 CRLF 行尾。 hexdump -c <yourfile> # 单个文件&#xff0c;$ 表示 LF 行尾。^M$ 表示 CRLF …...

spring boot easyexcel

1.pom <!-- easyexcel 依赖 --><dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</artifactId><version>3.1.1</version></dependency><dependency><groupId>org.projectlombok</group…...

Docker 部署 ShardingSphere-Proxy 数据库中间件

文章目录 Github官网文档ShardingSphere-Proxymysql-connector-java 驱动下载conf 配置global.yamldatabase-sharding.yamldatabase-readwrite-splitting.yamldockerdocker-compose.yml Apache ShardingSphere 是一款分布式的数据库生态系统&#xff0c; 可以将任意数据库转换为…...

Qt常用快捷键

Qt中的常用快捷键 F1查看帮助F2快速到变量声明 从cpp→hShift F2 函数的声明和定义之间快速切换 &#xff1b;选中函数名 &#xff0c;从h→cppF4在 cpp 和 h 文件切换 Shift F4在cpp/h文件与 界面文件中切换Ctrl /注释当前行 或者选中的区域Ctrl I自动缩进当前…...

关于RiboSeq分析流程的总结

最近关注了一下RiboSeq的分析方法&#xff0c;方法挺多的&#xff0c;但是无论哪种软件&#xff0c;都会存在或多或少的问题&#xff0c;一点问题不存在的软件不存在&#xff0c;问题的原因出在&#xff0c;1.有的脚本是用python2编写的&#xff0c;目前python2已经不能用了 2.…...

NLP任务:情感分析、看图说话

我可不向其他博主那样拖泥带水&#xff0c;我有代码就直接贴在文章里&#xff0c;或者放到gitee供你们参考下载&#xff0c;虽然写的不咋滴&#xff0c;废话少说&#xff0c;上代码。 gitee码云地址&#xff1a; 卢东艺/pytorch_cv_nlp - 码云 - 开源中国 (gitee.com)https:/…...

Linux桌面溯源

X窗口系统(X Window System) Linux起源于X窗口系统&#xff08;X Window System&#xff09;&#xff0c;亦即常说的X11&#xff0c;因其版本止于11之故。 X窗口系统&#xff08;X Window System&#xff0c;也常称为X11或X&#xff09;是一种以位图方式显示的软件窗口系统。…...

深入Linux:权限管理与常用命令详解

文章目录 ❤️Linux常用指令&#x1fa77;zip/unzip指令&#x1fa77;tar指令&#x1fa77;bc指令&#x1fa77;uname指令&#x1fa77;shutdown指令 ❤️shell命令以及原理❤️什么是 Shell 命令❤️Linux权限管理的概念❤️Linux权限管理&#x1fa77;文件访问者的分类&#…...

Mojo 编程语言:AI开发者的新宠儿

Mojo&#xff08;Meta Object Oriented programming for Java Objects&#xff09;是一种面向对象的编程语言&#xff0c;旨在简化和加速Java应用程序的开发过程。作为近年来新兴的编程语言&#xff0c;Mojo因其与Java的紧密集成以及AI开发领域的应用潜力而逐渐成为AI开发者的新…...

Day131 | 灵神 | 回溯算法 | 子集型 子集

Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a; 笔者写过很多次这道题了&#xff0c;不想写题解了&#xff0c;大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

条件运算符

C中的三目运算符&#xff08;也称条件运算符&#xff0c;英文&#xff1a;ternary operator&#xff09;是一种简洁的条件选择语句&#xff0c;语法如下&#xff1a; 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true&#xff0c;则整个表达式的结果为“表达式1”…...

【2025年】解决Burpsuite抓不到https包的问题

环境&#xff1a;windows11 burpsuite:2025.5 在抓取https网站时&#xff0c;burpsuite抓取不到https数据包&#xff0c;只显示&#xff1a; 解决该问题只需如下三个步骤&#xff1a; 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...

20个超级好用的 CSS 动画库

分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码&#xff0c;而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库&#xff0c;可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画&#xff0c;可以包含在你的网页或应用项目中。 3.An…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

Git常用命令完全指南:从入门到精通

Git常用命令完全指南&#xff1a;从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...

探索Selenium:自动化测试的神奇钥匙

目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...

Linux系统部署KES

1、安装准备 1.版本说明V008R006C009B0014 V008&#xff1a;是version产品的大版本。 R006&#xff1a;是release产品特性版本。 C009&#xff1a;是通用版 B0014&#xff1a;是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存&#xff1a;1GB 以上 硬盘&#xf…...

DeepSeek源码深度解析 × 华为仓颉语言编程精粹——从MoE架构到全场景开发生态

前言 在人工智能技术飞速发展的今天&#xff0c;深度学习与大模型技术已成为推动行业变革的核心驱动力&#xff0c;而高效、灵活的开发工具与编程语言则为技术创新提供了重要支撑。本书以两大前沿技术领域为核心&#xff0c;系统性地呈现了两部深度技术著作的精华&#xff1a;…...