STM32之六:SysTick系统滴答定时器
目录
1. SysTick简介
2. 时钟来源
3. SysTick寄存器
3.1 CTRL—SysTick控制及状态寄存器
3.2 RELOAD—SysTick重装载数值寄存器
3.3 CURRENT—SysTick当前数值寄存器
4. systick系统定时器配置
5. 延时函数实现
5.1 延时函数编写步骤
5.2 微秒级延时函数delay_us
5.3 毫秒级延时函数delay_ms
5.4 秒级延时函数delay_s
1. SysTick简介
SysTick——系统定时器,是属于CM3内核的一个外设,内嵌在NVIC中。SysTick是一个24位的向下递减的计数器,从重装载寄存器的值递减到0,之后自动从RELOAD寄存器中重装载定时器初值。只要不使能systick定时器,它就永不停息的一直循环计数,在睡眠模式下也能使用。
2. 时钟来源
1. AHB时钟8分频
2. FCLK内核时钟 ,默认选择FCLK内核时钟
3. SysTick寄存器
SysTick有4个寄存器,如下图所示。

3.1 CTRL—SysTick控制及状态寄存器
控制及状态寄存器共计24位,但只使用了其0、1、2、16位。其中第2位为是时钟选择位,置1表示使用处理器时钟,即系统时钟;
3.2 RELOAD—SysTick重装载数值寄存器
3.3 CURRENT—SysTick当前数值寄存器
3.4 校准数值寄存器,这个本节不需要,暂不介绍。
此图汇总systick的寄存器。

4. systick系统定时器配置
查看core_cm3.h可以找到systick_Config()函数,该函数配置了系统定时器的时钟源、重装载值和当前值。
static __INLINE uint32_t SysTick_Config(uint32_t ticks)
{ if (ticks > SysTick_LOAD_RELOAD_Msk) return (1); /* Reload value impossible */SysTick->LOAD = (ticks & SysTick_LOAD_RELOAD_Msk) - 1; /* set reload register */NVIC_SetPriority (SysTick_IRQn, (1<<__NVIC_PRIO_BITS) - 1); /* set Priority for Cortex-M0 System Interrupts */SysTick->VAL = 0; /* Load the SysTick Counter Value */SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk | SysTick_CTRL_TICKINT_Msk | SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */return (0); /* Function successful */
}
下面是函数中使用的结构体SysTick_Type,可以看到该结构体中包含了上文介绍的各个寄存器值。
typedef struct
{__IO uint32_t CTRL; /*!< Offset: 0x00 SysTick Control and Status Register */__IO uint32_t LOAD; /*!< Offset: 0x04 SysTick Reload Value Register */__IO uint32_t VAL; /*!< Offset: 0x08 SysTick Current Value Register */__I uint32_t CALIB; /*!< Offset: 0x0C SysTick Calibration Register */
} SysTick_Type;
下面是函数中使用的宏定义:
/* SysTick Control / Status Register Definitions */
#define SysTick_CTRL_COUNTFLAG_Pos 16 /*!< SysTick CTRL: COUNTFLAG Position */
#define SysTick_CTRL_COUNTFLAG_Msk (1ul << SysTick_CTRL_COUNTFLAG_Pos) /*!< SysTick CTRL: COUNTFLAG Mask */#define SysTick_CTRL_CLKSOURCE_Pos 2 /*!< SysTick CTRL: CLKSOURCE Position */
#define SysTick_CTRL_CLKSOURCE_Msk (1ul << SysTick_CTRL_CLKSOURCE_Pos) /*!< SysTick CTRL: CLKSOURCE Mask */#define SysTick_CTRL_TICKINT_Pos 1 /*!< SysTick CTRL: TICKINT Position */
#define SysTick_CTRL_TICKINT_Msk (1ul << SysTick_CTRL_TICKINT_Pos) /*!< SysTick CTRL: TICKINT Mask */#define SysTick_CTRL_ENABLE_Pos 0 /*!< SysTick CTRL: ENABLE Position */
#define SysTick_CTRL_ENABLE_Msk (1ul << SysTick_CTRL_ENABLE_Pos) /*!< SysTick CTRL: ENABLE Mask *//* SysTick Reload Register Definitions */
#define SysTick_LOAD_RELOAD_Pos 0 /*!< SysTick LOAD: RELOAD Position */
#define SysTick_LOAD_RELOAD_Msk (0xFFFFFFul << SysTick_LOAD_RELOAD_Pos) /*!< SysTick LOAD: RELOAD Mask *//* SysTick Current Register Definitions */
#define SysTick_VAL_CURRENT_Pos 0 /*!< SysTick VAL: CURRENT Position */
#define SysTick_VAL_CURRENT_Msk (0xFFFFFFul << SysTick_VAL_CURRENT_Pos) /*!< SysTick VAL: CURRENT Mask *//* SysTick Calibration Register Definitions */
#define SysTick_CALIB_NOREF_Pos 31 /*!< SysTick CALIB: NOREF Position */
#define SysTick_CALIB_NOREF_Msk (1ul << SysTick_CALIB_NOREF_Pos) /*!< SysTick CALIB: NOREF Mask */#define SysTick_CALIB_SKEW_Pos 30 /*!< SysTick CALIB: SKEW Position */
#define SysTick_CALIB_SKEW_Msk (1ul << SysTick_CALIB_SKEW_Pos) /*!< SysTick CALIB: SKEW Mask */#define SysTick_CALIB_TENMS_Pos 0 /*!< SysTick CALIB: TENMS Position */
#define SysTick_CALIB_TENMS_Msk (0xFFFFFFul << SysTick_VAL_CURRENT_Pos) /*!< SysTick CALIB: TENMS Mask */
/*@}*/ /* end of group CMSIS_CM3_SysTick */
其中,Msk表示掩码操作,掩码操作指的是对一串二进制数据,通过与msk的位操作,达到屏蔽制定位而实现需求。
例如对一串数字的0~3位清零,则可以定制一个msk=00001111。对于cmd=01010101,则cmd & ~msk = 01010101 & 11110000 = 01010000.
1ul,其中ul是一个后缀表示无符号长整型(unsigned long)。<<表示左移位操作,例如a<<b,表示a左移b位,通常代表,即
.
例如CTRL寄存器,其中SysTick_CTRL_CLKSOURCE_Msk 表示将1ul左移SysTick_CTRL_CLKSOURCE_Pos位,即2位,可得第2位的值为:,即第2位值为1,联系上文,可知CTRL的第2位为systick定时器的时钟源选择位,将本位赋值1,表示使用系统内核时钟。
如此,便能理解systick_Config()函数了。
5. 延时函数实现
5.1 延时函数编写步骤
- 失能systick系统定时器,即SysTick->CTRL 定时器第0位置0。
- 将新的重加载值写入到SysTick->LOAD寄存器中。
- 将SysTick->VAL的值置为0。
- 使能systick系统定时器。
官方推荐代码如下:(参考《Cortex M3与M4权威指南.pdf》第316页)
SysTick->CTRL = 0; // Disable SysTick
SysTick->LOAD = 0xFF; // Count from 255 to 0 (256 cycles)
SysTick->VAL = 0; // Clear current value as well as count flag
SysTick->CTRL = 5; // Enable SysTick timer with processor clock
while ((SysTick->CTRL & 0x00010000)==0);// Wait until count flag is set
SysTick->CTRL = 0; // Disable SysTick
下面分别为微秒级、毫秒级、秒级延时函数示例(摘自B站金善愚systick定时器讲解视频)。
5.2 微秒级延时函数delay_us
#define AHB_INPUT 72 //请按RCC中设置的AHB时钟频率填写到这里(单位MHz)void delay_us(u32 uS){ //uS微秒级延时程序(参考值即是延时数,72MHz时最大值233015) SysTick->CTRL = 0;SysTick->LOAD=AHB_INPUT*uS - 1;//重装计数初值(当主频是72MHz,72次为1微秒)SysTick->VAL=0x00; //清空定时器的计数器SysTick->CTRL=0x00000005;//时钟源HCLK,打开定时器while(!(SysTick->CTRL&0x00010000)); //等待计数到0SysTick->CTRL=0;//关闭定时器
}
5.3 毫秒级延时函数delay_ms
void delay_ms(u16 ms){ //mS毫秒级延时程序(参考值即是延时数,最大值65535) while( ms-- != 0){delay_us(1000); //调用1000微秒的延时}
}
//或者
void delay_ms(uint32_t ms)
{while(ms --){SysTick->CTRL = 0; // 关闭系统定时器后才能配置寄存器SysTick->LOAD = 72000 - 1; // 设置计数值,用于设置定时的时间SysTick->VAL = 0; // 清空当前值还有计数标志位SysTick->CTRL = 5; // 使能系统定时器工作,且时钟源为系统时钟的8分频(168MHz/8=21MHz)while(!(SysTick->CTRL&0x00010000)); //等待计数到0SysTick->CTRL = 0; // 关闭系统定时器 }
}
5.4 秒级延时函数delay_s
void delay_s(u16 s){ //S秒级延时程序(参考值即是延时数,最大值65535) while( s-- != 0){delay_ms(1000); //调用1000毫秒的延时}
}
相关文章:
STM32之六:SysTick系统滴答定时器
目录 1. SysTick简介 2. 时钟来源 3. SysTick寄存器 3.1 CTRL—SysTick控制及状态寄存器 3.2 RELOAD—SysTick重装载数值寄存器 3.3 CURRENT—SysTick当前数值寄存器 4. systick系统定时器配置 5. 延时函数实现 5.1 延时函数编写步骤 5.2 微秒级延时函数delay_us 5.…...

全栈物联网项目:结合 C/C++、Python、Node.js 和 React 开发智能温控系统(附代码示例)
1. 项目概述 本文详细介绍了一个基于STM32微控制器和AWS IoT云平台的智能温控器项目。该项目旨在实现远程温度监控和控制,具有以下主要特点: 使用STM32F103微控制器作为主控芯片,负责数据采集、处理和控制逻辑采用DHT22数字温湿度传感器,精确采集环境温湿度数据通过ESP8266 W…...

WPF学习(3) -- 控件模板
一、操作过程 二、代码 <Window x:Class"学习.MainWindow"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml"xmlns:d"http://schemas.microsoft.com/expressio…...
Netty Websocket SpringBoot Starter
netty websocket starter Quick Start Demo 项目 添加依赖 <!--添加源--> <repository><id>github</id><url>https://maven.pkg.github.com</url><snapshots><enabled>true</enabled></snapshots> </reposit…...

数据结构(4.2)——朴素模式匹配算法
字符串模式匹配 在主串中找到模式串相同的子串,并返回其所在的位置。 子串和模式串的区别 子串:主串的一部分,一定存在 模式串:不一定能在主串中找到 字符串模式匹配 朴素模式匹配算法 主串长度为n,模式串长度为…...
git切换远程仓库地址
git 更换远程仓库地址三种方法总结 一、前言 由于之前项目管理使用私服的 gitlab ,现在换成了Gitea,需要修改远端仓库地址。 二、环境 windows 10git version 2.34.0.windows.1 三、帮助文档 GitHub文档 四、三种修改方法 方法一:不删除远程仓…...
同步与异步:.NET 中的 Task.WaitAll 和 Task.WhenAll
在 C# 中,异步编程通常涉及同时运行多个任务。处理多个任务的两种常见方法是 Task.WaitAll 和 Task.WhenAll。虽然它们看起来很相似,但它们的用途不同,并且用于不同的场景。本文探讨了 Task.WaitAll 和 Task.WhenAll 之间的区别,并…...

在Linux系统实现瑞芯微RK3588部署rknntoolkit2进行模型转换
一、首先要先安装一个虚拟的环境 安装Miniconda包 Miniconda的官网链接:Minidonda官网 下载好放在要操作的linux系统,我用的是远程服务器的linux系统,我放在whl这个文件夹里面,这个文件夹是我自己创建的 运行安装 安装的操作都是yes就可以了 检查是否安装成功,输入下面…...

【人工智能】Transformers之Pipeline(概述):30w+大模型极简应用
目录 一、引言 二、pipeline库 2.1 概述 2.2 使用task实例化pipeline对象 2.2.1 基于task实例化“自动语音识别” 2.2.2 task列表 2.2.3 task默认模型 2.3 使用model实例化pipeline对象 2.3.1 基于model实例化“自动语音识别” 2.3.2 查看model与task…...

Jenkins中Node节点与构建任务
目录 节点在 Jenkins 中的主要作用 1. 分布式构建 分布式处理 负载均衡 2. 提供不同的运行环境 多平台支持 特殊环境需求 3. 提高资源利用率 动态资源管理 云端集成 4. 提供隔离和安全性 任务隔离 权限控制 5. 提高可扩展性 横向扩展 高可用性 Jenkins 主服务…...

Leetcode3200. 三角形的最大高度
Every day a Leetcode 题目来源:3200. 三角形的最大高度 解法1:模拟 枚举第一行是红色还是蓝色,再按题意模拟即可。 代码: /** lc appleetcode.cn id3200 langcpp** [3200] 三角形的最大高度*/// lc codestart class Solutio…...
docker运行nginx挂载前端html页面步骤
1.常用docker命令 1.docker ps -a 查看所有容器 2.docker ps查看存活的容器 3.docker rm 删除容器 4.docker stop 停止容器运行 5.docker logs 容器id 查看容器日志 6.docker images 查看镜像 7.docker rmi 删除镜像 8.docker exec nginx nginx -s reload 重新加载conf文件…...
kafka部署以及常用命令详细总结
1环境准备 1.1ip规划 ip: 192.168.1.200 1.2配置主机名 #设置主机名 hostnamectl set-hostname node11.3配置hosts [rootnode1 ~]# cat >> /etc/hosts << EOF192.168.1.200 node1 EOF2部署 2.1安装包准备 将以下安装包从官网下载到本地 jdk-8u371-linux-x6…...

代码随想录算法训练营第29天|LeetCode 134. 加油站、135. 分发糖果、860.柠檬水找零、406.根据身高重建队列
1. LeetCode 134. 加油站 题目链接:https://leetcode.cn/problems/gas-station/description/ 文章链接:https://programmercarl.com/0134.加油站.html 视频链接:https://www.bilibili.com/video/BV1jA411r7WX 思路: 贪心ÿ…...

代理模式(大话设计模式)C/C++版本
代理模式 C #include <iostream> using namespace std;class Subject // Subject 定义了RealSubject和Proxy的共用接口..这样就在任何使用RealSubject的地方都可以使用Proxy { public:virtual void func(){cout << "Subject" << endl;} };class R…...

本人学习保存-macOS打开Navicat提示「“Navicat Premium”已损坏,无法打开。 你应该将它移到废纸篓。」的解决方法
新安装了macOS Ventura,打开Navicat Premium,发现会提示: “Navicat Premium”已损坏,无法打开。 你应该将它移到废纸篓。 遇到这种情况,千万别直接移到废纸篓,是有办法解决的。在这里记录一下解决方案。 …...
《Cross-Image Pixel Contrasting for Semantic Segmentation》论文解读
期刊:TPAMI 年份:2024 摘要 研究图像语义分割问题。目前的方法主要集中在通过专门设计的上下文聚合模块(如空洞卷积、神经注意力)或结构感知的优化目标(如iou样损失)挖掘"局部"上下文,即单个图像中像素之间的依赖关系。然而&…...

技术周总结 2024.07.08~07.14(算法,Python,Java,Scala,PHP)
文章目录 一、07.13 周六1.0)算法题:字符串中的单词反转1.1) 问题01:可靠性计算中的MTTR MTTF MTBF 分别指什么?他们之间有什么联系?MTTR (Mean Time to Repair)MTTF (Mean Time to Failure)MTBF (Mean Time Between F…...
UnityECS学习中问题及总结entityQuery.ToComponentDataArray和entityQuery.ToEntityArray区别
在Unity的ECS(Entity Component System)开发中,entityQuery.ToComponentDataArray<T>(Allocator.Temp) 和 entityQuery.ToEntityArray(Allocator.Temp) 是两种不同的方法,用于从实体查询中获取数据。除了泛型参数之外&#…...

[python]基于yolov10+gradio目标检测演示系统设计
【设计介绍】 YOLOv10结合Gradio实现目标检测系统设计是一个结合了最新目标检测技术和快速部署框架的项目。下面将详细介绍这一系统的设计和实现过程。 一、YOLOv10介绍 YOLOv10是YOLO(You Only Look Once)系列的最新版本,由清华大学的研究…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...
pam_env.so模块配置解析
在PAM(Pluggable Authentication Modules)配置中, /etc/pam.d/su 文件相关配置含义如下: 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块,负责验证用户身份&am…...

CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...

Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...
OpenLayers 分屏对比(地图联动)
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...

TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?
在工业自动化持续演进的今天,通信网络的角色正变得愈发关键。 2025年6月6日,为期三天的华南国际工业博览会在深圳国际会展中心(宝安)圆满落幕。作为国内工业通信领域的技术型企业,光路科技(Fiberroad&…...