当前位置: 首页 > news >正文

How do I format markdown chatgpt response in tkinter frame python?

题意:怎样在Tkinter框架中使用Python来格式化Markdown格式的ChatGPT响应?

问题背景:

Chatgpt sometimes responds in markdown language. Sometimes the respond contains ** ** which means the text in between should be bold and ### text ### which means that text is a heading. I want to format this correctly and display it properly in tkinter. If it's bold or a heading, it should be formatted to bold or to a heading in tkintter. How to do this?

ChatGPT有时会以Markdown语言回应。有时回应中包含** **,这表示中间的文本应该是粗体的;而### text ###则表示该文本是一个标题。我想在Tkinter中正确地格式化并显示这些文本。如果它是粗体或标题,则应该在Tkinter中以粗体或标题的形式显示。如何做到这一点?

My code:

import tkinter as tk
from tkinter import ttk
from datetime import datetime
import openai
import json
import requestshistory = []
# Create a function to use ChatGPT 3.5 turbo to answer a question based on the prompt
def get_answer_from_chatgpt(prompt, historyxx):global historyopenai.api_key = "xxxxxxx"append_to_chat_log(message="\n\n\n")append_to_chat_log("Chatgpt")print("Trying")messages = [{"role": "user", "content": prompt}]try:stream = openai.chat.completions.create(model="gpt-3.5-turbo",messages=messages,stream=True,)for chunk in stream:chunk = chunk.choices[0].delta.contentchunk = str(chunk)if chunk != "None":append_to_chat_log(message=chunk)append_to_chat_log(message="\n\n\n")print("Streaming complete")except Exception as e:print(e)return "Sorry, an error occurred while processing your request."# Create a function to use OpenAI to answer a question based on the search resultsdef append_to_chat_log(sender=None, message=None):chat_log.config(state="normal")if sender:chat_log.insert("end", f"{sender}:\n", "sender")if message:chat_log.insert("end", message)chat_log.config(state="disabled")chat_log.see("end")chat_log.update()def send_message(event=None):global historymessage = message_entry.get(1.0, "end-1c") message = message.strip()message_entry.delete(1.0, tk.END)message_entry.update()if not message:pass else:append_to_chat_log("User", message)history.append(("user", message))if len(history) >4:history = history[-4:]print(message)response = get_answer_from_chatgpt(message, history)history.append(("assistant", response))root = tk.Tk()root.title("Chat")# Maximize the window
root.attributes('-zoomed', True)chat_frame = tk.Frame(root)
chat_frame.pack(expand=True, fill=tk.BOTH)chat_log = tk.Text(chat_frame, state='disabled', wrap='word', width=70, height=30, font=('Arial', 12), highlightthickness=0, borderwidth=0)
chat_log.pack(side=tk.LEFT, padx=(500,0), pady=10)message_entry = tk.Text(root, padx=17, insertbackground='white', width=70, height=1, spacing1=20, spacing3=20, font=('Open Sans', 14))
message_entry.pack(side=tk.LEFT, padx=(500, 0), pady=(0, 70))  # Adjust pady to move it slightly above the bottom
message_entry.mark_set("insert", "%d.%d" % (0,0))
message_entry.bind("<Return>", send_message)root.mainloop()

问题解决:

I solved my own question        我解决了我自己提出的问题

import tkinter as tk
from datetime import datetime
import openaihistory = []# Create a function to use ChatGPT 3.5 turbo to answer a question based on the prompt
def get_answer_from_chatgpt(prompt, historyxx):global historyopenai.api_key = "xxxx"append_to_chat_log(message="\n\n\n")append_to_chat_log("Chatgpt")print("Trying")messages = [{"role": "user", "content": prompt}]try:stream = openai.chat.completions.create(model="gpt-3.5-turbo",messages=messages,stream=True,)buffer = ""heading =  ""bold = Falsewhile True:chunk = next(stream)chunk = chunk.choices[0].delta.contentchunk = str(chunk)if chunk != "None":buffer += chunkif "**" in buffer:while "**" in buffer:pre, _, post = buffer.partition("**")append_to_chat_log(message=pre, bold=bold)bold = not boldbuffer = postif "###" in buffer:while "###" in buffer:pre, _, post = buffer.partition("###")append_to_chat_log(message=pre, bold=heading)heading = not headingbuffer = postelse:append_to_chat_log(message=buffer, bold=bold)buffer = ""append_to_chat_log(message="\n\n\n")print("Streaming complete")except Exception as e:print(e)return "Sorry, an error occurred while processing your request."def append_to_chat_log(sender=None, message=None, bold=False, heading=False):chat_log.config(state="normal")if sender:chat_log.insert("end", f"{sender}:\n", "sender")if message:if bold:chat_log.insert("end", message, "bold")if heading:chat_log.insert("end", message, "heading")else:chat_log.insert("end", message)chat_log.config(state="disabled")chat_log.see("end")chat_log.update()def send_message(event=None):global historymessage = message_entry.get(1.0, "end-1c")message = message.strip()message_entry.delete(1.0, tk.END)message_entry.update()if not message:pass else:append_to_chat_log("User", message)history.append(("user", message))if len(history) > 4:history = history[-4:]print(message)response = get_answer_from_chatgpt(message, history)history.append(("assistant", response))root = tk.Tk()
root.title("Chat")# Maximize the window
root.attributes('-zoomed', True)chat_frame = tk.Frame(root)
chat_frame.pack(expand=True, fill=tk.BOTH)chat_log = tk.Text(chat_frame, state='disabled', wrap='word', width=70, height=30, font=('Arial', 12), highlightthickness=0, borderwidth=0)
chat_log.tag_configure("sender", font=('Arial', 12, 'bold'))
chat_log.tag_configure("bold", font=('Arial', 12, 'bold'))
chat_log.tag_configure("heading", font=('Arial', 16, 'bold'))
chat_log.pack(side=tk.LEFT, padx=(500,0), pady=10)message_entry = tk.Text(root, padx=17, insertbackground='white', width=70, height=1, spacing1=20, spacing3=20, font=('Open Sans', 14))
message_entry.pack(side=tk.LEFT, padx=(500, 0), pady=(0, 70))  # Adjust pady to move it slightly above the bottom
message_entry.mark_set("insert", "%d.%d" % (0,0))
message_entry.bind("<Return>", send_message)root.mainloop()

相关文章:

How do I format markdown chatgpt response in tkinter frame python?

题意&#xff1a;怎样在Tkinter框架中使用Python来格式化Markdown格式的ChatGPT响应&#xff1f; 问题背景&#xff1a; Chatgpt sometimes responds in markdown language. Sometimes the respond contains ** ** which means the text in between should be bold and ### te…...

vs2019 QT无法打开源文件QModbusTcpClient

vs2019无法打开源文件QModbusTcpClient 如果配置的msvc2019,则查找到Include目录 然后包含&#xff1a; #include <QtSerialBus/qmodbustcpclient.h>...

初识c++(命名空间,缺省参数,函数重载)

一、命名空间 1、namespace的意义 在C/C中&#xff0c;变量、函数和后面要学到的类都是大量存在的&#xff0c;这些变量、函数和类的名称将都存在于全 局作用域中&#xff0c;可能会导致很多冲突。使用命名空间的目的是对标识符的名称进行本地化&#xff0c;以避免命名 冲突…...

印尼Facebook直播网络需要达到什么要求?

在全球化浪潮的推动下&#xff0c;海外直播正受到企业、个人和机构的广泛关注和青睐。无论是用于营销、推广还是互动&#xff0c;海外直播为各种组织提供了更多机会和可能性。本文将探讨在进行印尼Facebook直播前&#xff0c;需要满足哪些网络条件以确保直播的质量和用户体验。…...

力扣题解(最长回文子串)

5. 最长回文子串 给你一个字符串 s&#xff0c;找到 s 中最长的 回文子串 。思路&#xff1a; 对于第i个字符&#xff0c;可能的回文子串构成方式有两种&#xff0c;一种是以i位置元素为中心元素&#xff0c;向着两边扩展&#xff0c;一种是以i位置和i1位置元素为中心&#xf…...

数据湖表格式 Hudi/Iceberg/DeltaLake/Paimon TPCDS 性能对比(Spark 引擎)

当前&#xff0c;业界流行的集中数据湖表格式 Hudi/Iceberg/DeltaLake&#xff0c;和最近出现并且在国内比较火的 Paimon。我们现在看到的很多是针对流处理场景的读写性能测试&#xff0c;那么本篇文章我们将回归到大数据最基础的场景&#xff0c;对海量数据的批处理查询。本文…...

脚本练习-每5分钟执行一次获取当前服务器的基本情况

设计一个shell程序&#xff0c;每5分钟执行一次获取当前服务器的基本情况&#xff08;内存使用率&#xff0c;CPU负载&#xff0c;I/O&#xff0c;磁盘使用率&#xff09;&#xff0c;保存到120.20.20.20数据库上数据库帐号aaa密码bbb库名test表名host 创建一个名为server_stat…...

技术探索之kotlin浅谈

Kotlin是一种静态类型编程语言&#xff0c;它运行在Java虚拟机&#xff08;JVM&#xff09;上&#xff0c;可以与Java代码互操作。Kotlin由JetBrains开发&#xff0c;是一种现代、简洁且安全的编程语言。它在2011年首次亮相&#xff0c;2017年被谷歌宣布为Android官方开发语言。…...

机器学习之常用优化器

机器学习之常用优化器 1、SGD 优化器1.2、 SGD 的优缺点 2、 Adam 优化器2.1、设置 Adam 优化器2.2、使用 Adam 优化器的训练流程2.3、Adam 优化器的优缺点 3. AdamW 优化器3.1、示例3.2、训练过程3.3、AdamW 优化器的优点 1、SGD 优化器 在 PyTorch 中&#xff0c;设置 SGD 优…...

机器学习基本概念,Numpy,matplotlib和张量Tensor知识进一步学习

机器学习一些基本概念&#xff1a; 监督学习 监督学习是机器学习中最常见的形式之一&#xff0c;它涉及到使用带标签的数据集来训练模型。这意味着每条训练数据都包含输入特征和对应的输出标签。目标是让模型学会从输入到输出的映射&#xff0c;这样当给出新的未见过的输入时…...

博客前端项目学习day01

这里写自定义目录标题 登录创建项目配置环境变量&#xff0c;方便使用登录页面验证码登陆表单 在VScode上写前端&#xff0c;采用vue3。 登录 创建项目 检查node版本 node -v 创建一个新的项目 npm init vitelatest blog-front-admin 中间会弹出询问是否要安装包&#xff0c…...

java Collections.synchronizedCollection方法介绍

Collections.synchronizedCollection 是 Java 中的一个实用方法,用于创建一个线程安全的集合。它通过包装现有的集合对象来实现线程安全,以确保在多线程环境中对集合的访问是安全的。 主要功能 线程安全:通过同步包装现有的集合,使得在多线程环境中对集合的所有访问(包括…...

力扣每日一题:3011. 判断一个数组是否可以变为有序

力扣官网&#xff1a;前往作答&#xff01;&#xff01;&#xff01;&#xff01; 今日份每日一题&#xff1a; 题目要求&#xff1a; 给你一个下标从 0 开始且全是 正 整数的数组 nums 。 一次 操作 中&#xff0c;如果两个 相邻 元素在二进制下数位为 1 的数目 相同 &…...

ubuntu 上vscode +cmake的debug调试配置方法

在ubuntu配置pcl点云库以及opencv库的时候&#xff0c;需要在CMakeLists.txt中加入相应的代码。配置完成后&#xff0c;无法调试&#xff0c;与在windows上体验vs studio差别有点大。 找了好多调试debug配置方法&#xff0c;最终能用的有几种&#xff0c;但是有一种特别好用&a…...

使用Redis实现签到功能:Java示例解析

使用Redis实现签到功能&#xff1a;Java示例解析 在本博客中&#xff0c;我们将讨论一个使用Redis实现的签到功能的Java示例。该示例包括两个主要方法&#xff1a;sign()和signCount()&#xff0c;分别用于用户签到和计算用户当月的签到次数。 1. 签到方法&#xff1a;sign()…...

tableau标靶图,甘特图与瀑布图绘制 - 9

标靶图&#xff0c;甘特图与瀑布图 1. 标靶图绘制1.1 筛选器筛选日期1.2 条形图绘制1.3 编辑参考线1.4 设置参考线1.5 设置参考区间1.6 四分位设置1.7 其他标靶图结果显示 2.甘特图绘制2.1 选择列属性2.2 选择列属性2.3 创建新字段2.4 设置天数大小及颜色 3. 瀑布图绘制3.1 she…...

双向链表专题

在之前的单链表专题中&#xff0c;了解的单链表的结构是如何实现的&#xff0c;以及学习了如何实现单链表得各个功能。单链表虽然也能实现数据的增、删、查、改等功能&#xff0c;但是要找到尾节点或者是要找到指定位置之前的节点时&#xff0c;还是需要遍历链表&#xff0c;这…...

SpringCoud组件

一、使用SpringCloudAlibaba <dependencyManagement><dependencies><dependency><groupId>com.alibaba.cloud</groupId><artifactId>spring-cloud-alibaba-dependencies</artifactId><version>2023.0.1.0</version><…...

向量的定义和解释

这是一个向量&#xff1a; 向量具有大小&#xff08;大小&#xff09;和方向&#xff1a; 线的长度显示其大小&#xff0c;箭头指向方向。 在这里玩一个&#xff1a; 我们可以通过将它们从头到尾连接来添加两个向量&#xff1a; 无论我们添加它们的顺序如何&#xff0c;我们都…...

IoTDB 集群高效管理:一键启停功能介绍

如何快速启动、停止 IoTDB 集群节点的功能详解&#xff01; 在部署 IoTDB 集群时&#xff0c;对于基础的单机模式&#xff0c;启动过程相对简单&#xff0c;仅需执行 start-standalone 脚本来启动 1 个 ConfigNode 节点和 1 个 DataNode 节点。然而&#xff0c;对于更高级的分布…...

基于算法竞赛的c++编程(28)结构体的进阶应用

结构体的嵌套与复杂数据组织 在C中&#xff0c;结构体可以嵌套使用&#xff0c;形成更复杂的数据结构。例如&#xff0c;可以通过嵌套结构体描述多层级数据关系&#xff1a; struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

XML Group端口详解

在XML数据映射过程中&#xff0c;经常需要对数据进行分组聚合操作。例如&#xff0c;当处理包含多个物料明细的XML文件时&#xff0c;可能需要将相同物料号的明细归为一组&#xff0c;或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码&#xff0c;增加了开…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地

借阿里云中企出海大会的东风&#xff0c;以**「云启出海&#xff0c;智联未来&#xff5c;打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办&#xff0c;现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

dedecms 织梦自定义表单留言增加ajax验证码功能

增加ajax功能模块&#xff0c;用户不点击提交按钮&#xff0c;只要输入框失去焦点&#xff0c;就会提前提示验证码是否正确。 一&#xff0c;模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异&#xff0c;它们的数据同步要求既要保持数据的准确性和一致性&#xff0c;又要处理好性能问题。以下是一些主要的技术要点&#xff1a; 数据结构差异 数据类型差异&#xff…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...