当前位置: 首页 > news >正文

FastGPT+OneAI接入网络模型

文章目录

  • FastGPT连接OneAI接入网络模型
    • 1.准备工作
    • 2.开始部署
      • 2.1下载 docker-compose.yml
      • 2.2修改docker-compose.yml里的参数
    • 3.打开FastGPT添加模型
      • 3.1打开OneAPI
      • 3.2接入网络模型
      • 3.3重启服务

FastGPT连接OneAI接入网络模型

1.准备工作

本文档参考FastGPT的官方文档

主机ip接入模型主机名称系统
192.168.37.200文心一言fastgptcentos7

部署架构图

img

本架构是用docker-compose进行部署

安装docker
[root@fastgpt ~]# yum install -y yum-utils device-mapper-persistent-data lvm2
[root@fastgpt ~]# yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo
[root@fastgpt ~]# sed -i 's+download.docker.com+mirrors.aliyun.com/docker-ce+' /etc/yum.repos.d/docker-ce.repo
[root@fastgpt ~]# yum -y install docker-ce
[root@fastgpt ~]# systemctl enable --now docker
[root@fastgpt ~]# systemctl disable --now firewalld
[root@fastgpt ~]# setenforce 0安装docker-compose
[root@fastgpt ~]# curl -L https://github.com/docker/compose/releases/download/v2.20.3/docker-compose-`uname -s`-`uname -m` -o /usr/local/bin/docker-compose% Total    % Received % Xferd  Average Speed   Time    Time     Time  CurrentDload  Upload   Total   Spent    Left  Speed0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0
100 56.6M  100 56.6M    0     0   168k      0  0:05:44  0:05:44 --:--:--  225k
[root@fastgpt ~]# chmod +x /usr/local/bin/docker-compose
[root@fastgpt ~]# docker -v
Docker version 26.1.4, build 5650f9b
[root@fastgpt ~]# docker-compose -v
Docker Compose version v2.20.3

2.开始部署

2.1下载 docker-compose.yml

[root@fastgpt ~]# mkdir fastgpt
[root@fastgpt ~]# cd fastgpt/
[root@fastgpt fastgpt]# curl -O https://raw.githubusercontent.com/labring/FastGPT/main/projects/app/data/config.json% Total    % Received % Xferd  Average Speed   Time    Time     Time  CurrentDload  Upload   Total   Spent    Left  Speed
100  5109  100  5109    0     0    236      0  0:00:21  0:00:21 --:--:--  1122
[root@fastgpt fastgpt]# curl -o docker-compose.yml https://raw.githubusercontent.com/labring/FastGPT/main/files/docker/docker-compose-pgvector.yml% Total    % Received % Xferd  Average Speed   Time    Time     Time  CurrentDload  Upload   Total   Spent    Left  Speed
100  5577  100  5577    0     0   9613      0 --:--:-- --:--:-- --:--:--  9598
[root@fastgpt fastgpt]# ls
config.json  docker-compose.yml

2.2修改docker-compose.yml里的参数

有些容器的镜像可能很难拉下来,这时可以配一个加速器或者把docker-compose.yml里的镜像源换成国内的阿里源

[root@fastgpt fastgpt]# docker-compose up -d
[root@fastgpt fastgpt]# sleep 10
[root@fastgpt fastgpt]# docker restart oneapi    #重启一次oneapi(由于OneAPI的默认Key有点问题,不重启的话会提示找不到渠道,临时手动重启一次解决,等待作者修复)

3.打开FastGPT添加模型

可以通过ip:3000访问FastGPT,默认账号为root密码为1234

安装成功之后

在这里插入图片描述

访问时注意关防火墙

我们访问上去是不能用的,需要让oneapi当作一个跳板来连接外部模型

3.1打开OneAPI

通过ip:3001访问OneAPI,默认账户为root密码是123456

在这里插入图片描述

3.2接入网络模型

以文心一言为例

创建一个渠道

在这里插入图片描述

注意在填写密钥的时候一定要是apikey|SecretKey的格式,我因为只填写的apikey导致一直测试不了花了我1个小时时间排错

测试一下

在这里插入图片描述

创建一个令牌

在这里插入图片描述

创建好令牌之后就可以获取OneAPI的APIkey了

在这里插入图片描述

获取到key之后回到docker-compose.yml中来

- OPENAI_BASE_URL=http://192.168.37.200:3001/v1   #这里填写OneAPI的访问地址,并在后面加上/v1
- CHAT_API_KEY=sk-jp8hCd3nJL0Z0fdg2b5d9aB3B1Bd4f8686Ae9fF62eA06eB1  #这里填写我们刚刚获取的APIkey

然后再修改config.json文件

"llmModels": [...{"model": "ERNIE-4.0-8K", // 这里的模型需要对应 One API 的模型"name": "文心一言", // 对外展示的名称"avatar": "/imgs/model/ernie.svg", // 模型的logo"maxContext": 16000, // 最大上下文"maxResponse": 4000, // 最大回复"quoteMaxToken": 13000, // 最大引用内容"maxTemperature": 1.2, // 最大温度"charsPointsPrice": 0,"censor": false,"vision": false, // 是否支持图片输入"datasetProcess": false, // 是否设置为知识库处理模型"usedInClassify": true, // 是否用于问题分类"usedInExtractFields": true, // 是否用于字段提取"usedInToolCall": true, // 是否用于工具调用"usedInQueryExtension": true, // 是否用于问题优化"toolChoice": true, // 是否支持工具选择"functionCall": false, // 是否支持函数调用"customCQPrompt": "", // 自定义文本分类提示词(不支持工具和函数调用的模型"customExtractPrompt": "", // 自定义内容提取提示词"defaultSystemChatPrompt": "", // 对话默认携带的系统提示词"defaultConfig":{}  // 请求API时,挟带一些默认配置(比如 GLM4 的 top_p)}...
],

添加模型向量

"vectorModels": [......{"model": "text-embedding-ada-002","name": "Embedding-2","avatar": "/imgs/model/openai.svg","charsPointsPrice": 0,"defaultToken": 700,"maxToken": 3000,"weight": 100},......
]

3.3重启服务

[root@fastgpt fastgpt]# docker-compose down && docker-compose up -d

在这里插入图片描述

这里就可以选择文心一言进行对话了

我们尝试进行一次对话

在这里插入图片描述
这样我们就接入好了网络模型

相关文章:

FastGPT+OneAI接入网络模型

文章目录 FastGPT连接OneAI接入网络模型1.准备工作2.开始部署2.1下载 docker-compose.yml2.2修改docker-compose.yml里的参数 3.打开FastGPT添加模型3.1打开OneAPI3.2接入网络模型3.3重启服务 FastGPT连接OneAI接入网络模型 1.准备工作 本文档参考FastGPT的官方文档 主机ip接…...

Java核心篇之JVM探秘:内存模型与管理初探

系列文章目录 第一章 Java核心篇之JVM探秘:内存模型与管理初探 第二章 Java核心篇之JVM探秘:对象创建与内存分配机制 第三章 Java核心篇之JVM探秘:垃圾回收算法与垃圾收集器 第四章 Java核心篇之JVM调优实战:Arthas工具使用及…...

未来互联网的新篇章:深度解析Facebook的技术与战略

随着科技的飞速发展和社会的不断变迁,互联网作为全球信息交流的重要平台,正经历着前所未有的变革和演进。作为全球最大的社交媒体平台之一,Facebook不仅是人们沟通、分享和互动的重要场所,更是科技创新和数字化进程的推动者。本文…...

MySQL卸载 - Windows版

MySQL卸载 - Windows版 1. 停止MySQL服务 winR 打开运行,输入 services.msc 点击 “确定” 调出系统服务。 2. 卸载MySQL相关组件 打开控制面板 —> 卸载程序 —> 卸载MySQL相关所有组件 3. 删除MySQL安装目录 4. 删除MySQL数据目录 数据存放目录是在 …...

Java核心篇之JVM探秘:对象创建与内存分配机制

系列文章目录 第一章 Java核心篇之JVM探秘:内存模型与管理初探 第二章 Java核心篇之JVM探秘:对象创建与内存分配机制 第三章 Java核心篇之JVM探秘:垃圾回收算法与垃圾收集器 第四章 Java核心篇之JVM调优实战:Arthas工具使用及…...

Nuxt框架中内置组件详解及使用指南(五)

title: Nuxt框架中内置组件详解及使用指南(五) date: 2024/7/10 updated: 2024/7/10 author: cmdragon excerpt: 摘要:本文详细介绍了Nuxt框架中和组件的使用方法与配置,包括安装、基本用法、属性详解、示例代码以及高级功能如…...

python开发遇到的坑汇总

文章目录 1.点击导入操作,所有配置全没了 1.点击导入操作,所有配置全没了 在 PyCharm 中,如果你遇到了点击导入(import)操作后,项目似乎进行了重新安装或重新部署的情况,这通常不是由简单的导入…...

【线性表,线性表中的顺序表和链表】

目录 1、线性表的定义和基本操作1.1、线性表的定义1.2、线性表的基本操作 2、顺序表和链表的比较2.1、顺序表2.1.1、顺序表的定义和特点2.1.2、顺序表的实现(1)顺序表的静态分配:(2)顺序表的动态分配 2.1.3、顺序表的基…...

46 mysql 客户端拿不到具体的错误信息

前言 这是最近碰到的一个问题 同样的一个 环境的问题, 在正常的 mysql 环境会返回 具体的错误信息, 然后 在我的另外一个环境里面 只能返回一些 unknown error 之类的 十分抽象的环境 然后 我们这里 来看一下 具体的情况 我们这里从 错误的环境 往前推导 来查看 并解决这个…...

Java语言程序设计——篇三(2)

循环结构 概述1️⃣while循环例题讲解 2️⃣do-while循环例题讲解 🚩while循环与do-while循环区别3️⃣for循环例题讲解 4️⃣循环的嵌套🏮例题讲解 概述 ⭐️Java语言提供了4种循环结构: (1) while循环 (2) do-while循环 (3) for循环 (4)增…...

如何实现一个分布式锁

如何实现一个分布式锁 本篇内容主要介绍如何使用 Java 语言实现一个注解式的分布式锁,主要是通过注解AOP 环绕通知来实现。 1. 锁注解 我们首先写一个锁的注解 /*** 分布式锁注解*/ Retention(RetentionPolicy.RUNTIME) Target({ElementType.METHOD}) Documente…...

Ajax从零到实战

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 非常期待和您一起在这个小…...

编程参考 - 在C++移动构造函数声明中使用noexcept

在 C 中,noexcept 是用于表示函数不抛出异常的指定符。它既可用于常规函数,也可用于特殊成员函数,包括构造函数和析构函数。使用 noexcept 可以帮助编译器进行优化,提高代码的安全性和正确性。 In C, noexcept is a specifier use…...

Vue2/Vue3实现全局/局部添加防篡改水印的效果。删除元素无效!更改元素属性无效!支持图片、元素、视频等等。

水印目的 版权保护:水印可以在图片、文档或视频中嵌入作者、品牌或版权所有者的信息,以防止未经授权的复制、传播或使用。当其他人使用带有水印的内容时,可以追溯到原始作者或版权所有者,从而加强版权保护。 身份识别:水印可以用作作者或品牌的标识符,使观众能够轻松识…...

GuLi商城-商品服务-API-属性分组-获取分类属性分组

获取分类属性分组接口开发 操作的是这张表 造数据: 后台代码: @Override public PageUtils queryPage(Map<String, Object> params, Long catelogId) {//select * from pms_attr_group where catelog_id=? and (attr_group_id=key or attr_group_name like %key%)Stri…...

安全测试理论

安全测试理论 什么是安全测试&#xff1f; 安全测试&#xff1a;发现系统安全隐患的过程安全测试与传统测试区别 传统测试&#xff1a;发现bug为目的 安全测试&#xff1a;发现系统安全隐患什么是渗透测试 渗透测试&#xff1a;已成功入侵系统为目标的的攻击过程渗透测试与安全…...

序列化和反序列化

面试题&#xff1a;对序列化和反序列化的理解&#xff1f; 我们之所以需要序列化&#xff0c;它核心的目的是为了解决网络通信之间的对象传输的问题&#xff0c;也就是说&#xff0c;如何把当前JVM进程的一个对象&#xff0c;通过跨网络传输到另一个JVM进程里面&#xff0c;而序…...

OpenCV中使用Canny算法在图像中查找边缘

操作系统&#xff1a;ubuntu22.04OpenCV版本&#xff1a;OpenCV4.9IDE:Visual Studio Code编程语言&#xff1a;C11 算法描述 Canny算法是一种广泛应用于计算机视觉和图像处理领域中的边缘检测算法。它由John F. Canny在1986年提出&#xff0c;旨在寻找给定噪声条件下的最佳边…...

基于springboot+vue+uniapp的机电公司管理信息系统

开发语言&#xff1a;Java框架&#xff1a;springbootuniappJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09;数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包&#…...

电子期刊制作实战教程:从零开始制作

​随着互联网的普及&#xff0c;电子期刊已经成为了信息传递的重要载体。它以便捷、环保、互动性强等特点受到了越来越多人的青睐。那么&#xff0c;如何从零开始制作一份吸引人的电子期刊呢&#xff1f; 1.要制作电子杂志,首先需要选择一款适合自己的软件。比如FLBOOK在线制作…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接&#xff1a;3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学&#xff08;Elliptic Curve Cryptography&#xff09;是基于椭圆曲线数学理论的公钥密码系统&#xff0c;由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA&#xff0c;ECC在相同安全强度下密钥更短&#xff08;256位ECC ≈ 3072位RSA…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例&#xff1a;使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例&#xff1a;使用OpenAI GPT-3进…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课&#xff0c;做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程&#xff0c;它的核心机制是 Goroutine 协程、Channel 通道&#xff0c;并基于CSP&#xff08;Communicating Sequential Processes&#xff0…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...