当前位置: 首页 > news >正文

每日Attention学习11——Lightweight Dilated Bottleneck

模块出处

[TITS 23] [link] [code] Lightweight Real-Time Semantic Segmentation Network With Efficient Transformer and CNN


模块名称

Lightweight Dilated Bottleneck (LDB)


模块作用

改进的编码器块


模块结构

在这里插入图片描述


模块代码
import torch
import torch.nn as nn
import torch.nn.functional as Fclass Conv(nn.Module):def __init__(self, nIn, nOut, kSize, stride, padding, dilation=(1, 1), groups=1, bn_acti=False, bias=False):super().__init__()self.bn_acti = bn_actiself.conv = nn.Conv2d(nIn, nOut, kernel_size=kSize,stride=stride, padding=padding,dilation=dilation, groups=groups, bias=bias)if self.bn_acti:self.bn_prelu = BNPReLU(nOut)def forward(self, input):output = self.conv(input)if self.bn_acti:output = self.bn_prelu(output)return outputclass BNPReLU(nn.Module):def __init__(self, nIn):super().__init__()self.bn = nn.BatchNorm2d(nIn, eps=1e-3)self.acti = nn.PReLU(nIn)def forward(self, input):output = self.bn(input)output = self.acti(output)return outputclass ShuffleBlock(nn.Module):def __init__(self, groups):super(ShuffleBlock, self).__init__()self.groups = groupsdef forward(self, x):'''Channel shuffle: [N,C,H,W] -> [N,g,C/g,H,W] -> [N,C/g,g,H,w] -> [N,C,H,W]'''N, C, H, W = x.size()g = self.groups#return x.view(N, g, int(C / g), H, W).permute(0, 2, 1, 3, 4).contiguous().view(N, C, H, W)class eca_layer(nn.Module):"""Constructs a ECA module.Args:channel: Number of channels of the input feature mapk_size: Adaptive selection of kernel size"""def __init__(self, channel, k_size=3):super(eca_layer, self).__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False)self.sigmoid = nn.Sigmoid()def forward(self, x):b, c, h, w = x.size()# feature descriptor on the global spatial informationy = self.avg_pool(x)# Two different branches of ECA moduley = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)# Multi-scale information fusiony = self.sigmoid(y)return x * y.expand_as(x)class LDB(nn.Module):def __init__(self, nIn, d=1, kSize=3, dkSize=3):super().__init__()self.bn_relu_1 = BNPReLU(nIn)self.conv1x1_in = Conv(nIn, nIn // 2, 1, 1, padding=0, bn_acti=False)self.conv3x1 = Conv(nIn // 2, nIn // 2, (kSize, 1), 1, padding=(1, 0), bn_acti=True)self.conv1x3 = Conv(nIn // 2, nIn // 2, (1, kSize), 1, padding=(0, 1), bn_acti=True)self.dconv3x1 = Conv(nIn // 2, nIn // 2, (dkSize, 1), 1, padding=(1, 0), groups=nIn // 2, bn_acti=True)self.dconv1x3 = Conv(nIn // 2, nIn // 2, (1, dkSize), 1, padding=(0, 1), groups=nIn // 2, bn_acti=True)self.ca11 = eca_layer(nIn // 2)self.ddconv3x1 = Conv(nIn // 2, nIn // 2, (dkSize, 1), 1, padding=(1 * d, 0), dilation=(d, 1), groups=nIn // 2, bn_acti=True)self.ddconv1x3 = Conv(nIn // 2, nIn // 2, (1, dkSize), 1, padding=(0, 1 * d), dilation=(1, d), groups=nIn // 2, bn_acti=True)self.ca22 = eca_layer(nIn // 2)self.bn_relu_2 = BNPReLU(nIn // 2)self.conv1x1 = Conv(nIn // 2, nIn, 1, 1, padding=0, bn_acti=False)self.shuffle = ShuffleBlock(nIn // 2)def forward(self, input):output = self.bn_relu_1(input)output = self.conv1x1_in(output)output = self.conv3x1(output)output = self.conv1x3(output)br1 = self.dconv3x1(output)br1 = self.dconv1x3(br1)br1 = self.ca11(br1)br2 = self.ddconv3x1(output)br2 = self.ddconv1x3(br2)br2 = self.ca22(br2)output = br1 + br2 + outputoutput = self.bn_relu_2(output)output = self.conv1x1(output)output = self.shuffle(output + input)return outputif __name__ == '__main__':x = torch.randn([3, 256, 32, 32])ldb = LDB(nIn=256)out = ldb(x)print(out.shape)  # 3, 256, 32, 32

原文表述

LDB的结构整体上借鉴了ResNet的思想,将模块设计为残差模块,以在网络层数尽可能少的情况下收集更多的特征信息。具体来说,在bottleneck处,通过1×1卷积将输入特征的通道数减半,减少通道数之后,参数量和计算量大大减少,虽然这样会损失一部分准确率,但此时多堆叠两个模块比弥补损失更为有利。同时,由于使用了1×1卷积,必须加深网络深度才能获得更大的感受野,因此在1×1卷积之后,增加了3×1和1×3的分解卷积,以拓展感受野,从而捕捉更大范围的上下文信息。而且分解卷积也是基于考虑参数数量和计算量。同样,在接下来的双分支结构中,两个分支也都使用了分解卷积,其中一个负责局部、短距离的特征信息,另一个则使用了空洞卷积,负责在不同空洞率下从更大的感受野中提取特征信息。紧接着这两个分支的是通道注意力机制,其灵感来自ECANet,旨在在通道维度上构建注意力矩阵,以增强特征表达,抑制噪声干扰,因为对于CNN来说,大部分特征信息都包含在通道中。然后,将两个低维分支和中间特征融合,输入到下面的1×1逐点卷积中,以将特征图的通道数恢复为与输入特征图的通道数相同。最后,采用channel shuffle的策略,避免depth-wise convolution带来的信息独立、通道间无相关性的弊端,促进不同通道间语义信息的交换。

相关文章:

每日Attention学习11——Lightweight Dilated Bottleneck

模块出处 [TITS 23] [link] [code] Lightweight Real-Time Semantic Segmentation Network With Efficient Transformer and CNN 模块名称 Lightweight Dilated Bottleneck (LDB) 模块作用 改进的编码器块 模块结构 模块代码 import torch import torch.nn as nn import to…...

EM32DX-E4 IO 扩展模块

输入:0x6000-01 // 输入 0-15 6020H——00H IN0 计数【0~7】 ——01H IN0_SetCountMode S32 r/w 初始值默认为 0 设置 IN0 的计数方式:0 电平下 降沿,1 电平上升沿, 2 电平任意沿 ——02H IN0_Set…...

【数据结构与算法】选择排序篇----详解直接插入排序和哈希排序【图文讲解】

欢迎来到CILMY23的博客 🏆本篇主题为:【数据结构与算法】选择排序篇----详解直接插入排序和哈希排序 🏆个人主页:CILMY23-CSDN博客 🏆系列专栏:Python | C | C语言 | 数据结构与算法 | 贪心算法 | Linux…...

SpringBoot实战:多表联查

1. 保存和更新公寓信息 请求数据的结构 Schema(description "公寓信息") Data public class ApartmentSubmitVo extends ApartmentInfo {Schema(description"公寓配套id")private List<Long> facilityInfoIds;Schema(description"公寓标签i…...

解决mysql,Navicat for MySQL,IntelliJ IDEA之间中文乱码

使用软件版本 jdk-8u171-windows-x64 ideaIU-2021.1.3 mysql-essential-5.0.87-win32 navicat8_mysql_cs 这个问题我调试了好久&#xff0c;网上的方法基本上都试过了&#xff0c;终于是解决了。 三个地方结果都不一样。 方法一 首先大家可以尝试下面这种方法&#xff1a…...

虚拟环境操作

1、对虚拟环境的操作 查看虚拟环境列表 conda env list 创建虚拟环境 conda create -n 虚拟环境名称 python3.x 激活虚拟环境 conda activate 虚拟环境名称 退出虚拟环境 conda deactivate 删除虚拟环境 conda remove -n 虚拟环境名称 all 2、对虚拟环境下的包的操作…...

企业网三层架构

企业网三层架构&#xff1a;是一种层次化模型设计&#xff0c;旨在将复杂的网络设计分成三个层次&#xff0c;每个层次都着重于某些特定的功能&#xff0c;以提高效率和稳定性。 企业网三层架构层次&#xff1a; 接入层&#xff1a;使终端设备接入到网络中来&#xff0c;提供…...

node.js的安装及学习(node/nvm/npm的区别)

一、什么是node、nvm和npm 1.Node.js node.js 一种Javascript编程语言的运行环境&#xff0c;能够使得javascript能够脱离浏览器运行。以前js只能在浏览器&#xff08;也就是客户端&#xff09;上运行&#xff0c;node.js将浏览器中的javascript运行环境进行封装的&#xff0c;…...

性能优化篇:用WebSocket替代传统的http轮循

当我还是初级菜鸟时,我只会写定时器定时调用接口,发起http请求,定时轮训请求接口,返回最新数据,定时器开启的多了还会引起页面卡顿的性能问题,虽然及时销了但还是会影响流畅问题。然后技术leader一声令下说改成websoket的请求方式,为什么这么做呢?下面来谈谈WebSocket相…...

virtualbox的ubuntu默认ipv4地址为10.0.2.15的修改以及xshell和xftp的连接

virtualbox安装Ubuntu后&#xff0c;默认的地址为10.0.2.15 我们查看virtualbox的设置发现是NAT 学过计算机网络的应该了解NAT技术&#xff0c;为了安全以及缓解ip使用&#xff0c;我们留了部分私有ip地址。 私有IP地址网段如下&#xff1a; A类&#xff1a;1个A类网段&…...

Codeforces Round 957 (Div. 3)(A~D题)

A. Only Pluses 思路: 优先增加最小的数&#xff0c;它们的乘积会是最优,假如只有两个数a和b&#xff0c;b>a&#xff0c;那么a 1&#xff0c;就增加一份b。如果b 1&#xff0c;只能增加1份a。因为 b > a&#xff0c;所以增加小的数是最优的。 代码: #include<bi…...

fedora 40 安装拼音输入法

仅做参考&#xff0c;一般主流linux版本在安装完成后&#xff0c;都会自带中文输入法。而需要配置中文输入法的小众发行版往往软件仓库自带的依赖不全。 1,sudo dnf install ibus 2,sudo dnf install im-chooser 3,sudo dnf install ibus-libpinyin 4,在终端输入im-choose…...

Chromium CI/CD 之Jenkins实用指南2024-如何创建新节点(三)

1. 前言 在前一篇《Jenkins实用指南2024-系统基本配置&#xff08;二&#xff09;》中&#xff0c;我们详细介绍了如何对Jenkins进行基本配置&#xff0c;包括系统设置、安全配置、插件管理以及创建第一个Job。通过这些配置&#xff0c;您的Jenkins环境已经具备了基本的功能和…...

Git代码管理工具 — 3 Git基本操作指令详解

目录 1 获取本地仓库 2 基础操作指令 2.1 基础操作指令框架 2.2 git status查看修改的状态 2.3 git add添加工作区到暂存区 2.4 提交暂存区到本地仓库 2.5 git log查看提交日志 2.6 git reflog查看已经删除的记录 2.7 git reset版本回退 2.8 添加文件至忽略列表 1 获…...

Linux——多线程(五)

1.线程池 1.1初期框架 thread.hpp #include<iostream> #include <string> #include <unistd.h> #include <functional> #include <pthread.h>namespace ThreadModule {using func_t std::function<void()>;class Thread{public:void E…...

张量分解(4)——SVD奇异值分解

&#x1f345; 写在前面 &#x1f468;‍&#x1f393; 博主介绍&#xff1a;大家好&#xff0c;这里是hyk写算法了吗&#xff0c;一枚致力于学习算法和人工智能领域的小菜鸟。 &#x1f50e;个人主页&#xff1a;主页链接&#xff08;欢迎各位大佬光临指导&#xff09; ⭐️近…...

第三方配件也能适配苹果了,iOS 18与iPadOS 18将支持快速配对

苹果公司以其对用户体验的不懈追求和对创新技术的不断探索而闻名。随着iOS 18和iPadOS 18的发布&#xff0c;苹果再次证明了其在移动操作系统领域的领先地位。 最新系统版本中的一项引人注目的功能&#xff0c;便是对蓝牙和Wi-Fi配件的配对方式进行了重大改进&#xff0c;不仅…...

Docker 部署 Nginx 并在容器内配置申请免费 SSL 证书

文章目录 dockerdocker-compose.yml申请免费 SSL 证书请求头参数带下划线 docker https://hub.docker.com/_/nginx docker pull nginx:1.27注&#xff1a; 国内网络原因无法下载镜像&#xff0c;nginx 镜像文件下载链接 https://pan.baidu.com/s/1O35cPbx6AHWUJL1v5-REzA?pw…...

模型评估与选择

2.1 经验误差与过拟合 错误率&#xff08;error rate&#xff09;&#xff1a; 分类错误的样本数占样本总数的比例 精度&#xff08;accuracy&#xff09;&#xff1a;1- 错误率 训练误差 / 经验误差&#xff1a;在训练集上的误差 泛化误差&#xff1a;在新样本上的误差 过…...

有必要把共享服务器升级到VPS吗?

根据自己的需求来选择是否升级&#xff0c;虚拟专用服务器 (VPS) 是一种托管解决方案&#xff0c;它以低得多的成本提供专用服务器的大部分功能。使用 VPS&#xff0c;您的虚拟服务器将与在其上运行的其他虚拟服务器共享硬件服务器的资源。但是&#xff0c;与传统的共享托管&am…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者&#xff1a;Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位&#xff1a;中南大学地球科学与信息物理学院论文标题&#xff1a;BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接&#xff1a;https://arxiv.…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

ios苹果系统,js 滑动屏幕、锚定无效

现象&#xff1a;window.addEventListener监听touch无效&#xff0c;划不动屏幕&#xff0c;但是代码逻辑都有执行到。 scrollIntoView也无效。 原因&#xff1a;这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作&#xff0c;从而会影响…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...

MFC 抛体运动模拟:常见问题解决与界面美化

在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...

【网络安全】开源系统getshell漏洞挖掘

审计过程&#xff1a; 在入口文件admin/index.php中&#xff1a; 用户可以通过m,c,a等参数控制加载的文件和方法&#xff0c;在app/system/entrance.php中存在重点代码&#xff1a; 当M_TYPE system并且M_MODULE include时&#xff0c;会设置常量PATH_OWN_FILE为PATH_APP.M_T…...

云原生周刊:k0s 成为 CNCF 沙箱项目

开源项目推荐 HAMi HAMi&#xff08;原名 k8s‑vGPU‑scheduler&#xff09;是一款 CNCF Sandbox 级别的开源 K8s 中间件&#xff0c;通过虚拟化 GPU/NPU 等异构设备并支持内存、计算核心时间片隔离及共享调度&#xff0c;为容器提供统一接口&#xff0c;实现细粒度资源配额…...

Android写一个捕获全局异常的工具类

项目开发和实际运行过程中难免会遇到异常发生&#xff0c;系统提供了一个可以捕获全局异常的工具Uncaughtexceptionhandler&#xff0c;它是Thread的子类&#xff08;就是package java.lang;里线程的Thread&#xff09;。本文将利用它将设备信息、报错信息以及错误的发生时间都…...

Mysql故障排插与环境优化

前置知识点 最上层是一些客户端和连接服务&#xff0c;包含本 sock 通信和大多数jiyukehuduan/服务端工具实现的TCP/IP通信。主要完成一些简介处理、授权认证、及相关的安全方案等。在该层上引入了线程池的概念&#xff0c;为通过安全认证接入的客户端提供线程。同样在该层上可…...

门静脉高压——表现

一、门静脉高压表现 00:01 1. 门静脉构成 00:13 组成结构&#xff1a;由肠系膜上静脉和脾静脉汇合构成&#xff0c;是肝脏血液供应的主要来源。淤血后果&#xff1a;门静脉淤血会同时导致脾静脉和肠系膜上静脉淤血&#xff0c;引发后续系列症状。 2. 脾大和脾功能亢进 00:46 …...