张量分解(4)——SVD奇异值分解
🍅 写在前面
👨🎓 博主介绍:大家好,这里是hyk写算法了吗,一枚致力于学习算法和人工智能领域的小菜鸟。
🔎个人主页:主页链接(欢迎各位大佬光临指导)
⭐️近期专栏:机器学习与深度学习
LeetCode算法实例
张量分解
张量分析系列知识,详见下方链接:
张量分解(1)——初探张量
张量分解(2)——张量运算
张量分解(3)——CP分解
张量分解(4)——SVD奇异值分解
张量分解(5)——Tucker分解
本系列文章主要参考论文:Tensor Decompositions and Applications∗
目录
- SVD原理
- SVD形式
- SVD计算
- SVD意义
- SVD分解示例
SVD原理
SVD奇异值分解是一个有着很明显的物理意义的一种方法,它可以将一个比较复杂的矩阵用更小更简单的几个子矩阵的相乘来表示,而可以使用这些小矩阵描述矩阵的重要的特性!和矩阵的特征值特征向量分解有所不同,SVD不需要矩阵为方阵,使用局限性更小。
SVD形式
SVD矩阵分解的形式为:
A = U Σ V T \mathrm{A}=\mathrm{U} \Sigma \mathrm{V}^{\mathrm{T}} A=UΣVT

这里假设待分解的矩阵A为m×n维矩阵。U就是m×m维矩阵,名称为左奇异向量。Σ是m×n维矩阵,除了对角线元素,其他元素均是0,对角线元素就是奇异值。V的转置是n×n维的矩阵,名称为右奇异向量。
SVD计算
上面我们给除了SVD分解的形式,那么如何计算公式中的三个参数呢?
1、右奇异向量:
( A T A ) v i = λ i v i \left(A^T A\right) v_i=\lambda_i v_i (ATA)vi=λivi
我们对 ( A T A ) \left(A^T A\right) (ATA)矩阵求特征值特征向量后,这里的 v i vi vi就是右奇异向量,关于如何求矩阵特征值和特征向量,这里不再详细介绍。
2、奇异值
σ i = λ i \begin{aligned} & \sigma_{\mathrm{i}}=\sqrt{\lambda_{\mathrm{i}}} \\ \end{aligned} σi=λi
对上述特征值开方,即可求得奇异值。
3、左奇异向量
u i = 1 σ i A v i \begin{aligned} & & \mathrm{u}_{\mathrm{i}}=\frac{1}{\sigma_{\mathrm{i}}} A v_{\mathrm{i}} \end{aligned} ui=σi1Avi
求得奇异值与右奇异向量,二者按照上方公式计算即可得出左奇异向量。
最后将所求得的各个参数的分量合并在一起,按照形式排列,即可实现奇异值分解。
SVD意义
奇异值与矩阵特征值类似,在Σ矩阵中从大到小排列,但是奇异值减小的非常快,前10%的奇异值之和就占据奇异值总和的99%以上!我们也可以用最大的k个的奇异值和对应的左右奇异向量来近似描述矩阵。即: A m × n = U m × m Σ m × n V n × n T ≈ U m × k Σ k × k V k × n T \mathrm{A}_{\mathrm{m} \times \mathrm{n}}=\mathrm{U}_{\mathrm{m} \times \mathrm{m}} \Sigma_{\mathrm{m} \times \mathrm{n}} \mathrm{V}_{\mathrm{n} \times \mathrm{n}}^{\mathrm{T}} \approx \mathrm{U}_{\mathrm{m} \times \mathrm{k}} \Sigma_{\mathrm{k} \times \mathrm{k}} \mathrm{V}_{\mathrm{k} \times \mathrm{n}}^{\mathrm{T}} Am×n=Um×mΣm×nVn×nT≈Um×kΣk×kVk×nT
其中k比n要小很多。简而言之,SVD通过分解数据矩阵,帮助我们在降低数据维度的同时保留最重要的信息,这在数据压缩和去噪中非常有用。在推荐系统中,SVD通过揭示用户和物品的隐含特征,提升了推荐的准确性和个性化水平。
SVD分解示例
- 矩阵 A \boldsymbol{A} A 为: A = ( 0 1 1 1 1 0 ) \mathbf{A}=\left(\begin{array}{ll}0 & 1 \\ 1 & 1 \\ 1 & 0\end{array}\right) A= 011110
- 首先求出 A T A \boldsymbol{A}^T \boldsymbol{A} ATA 和 A A T \boldsymbol{A} \boldsymbol{A}^T AAT
A T A = ( 0 1 1 1 1 0 ) ( 0 1 1 1 1 0 ) = ( 2 1 1 2 ) A A T = ( 0 1 1 1 1 0 ) ( 0 1 1 1 1 0 ) = ( 1 1 0 1 2 1 0 1 1 ) \begin{aligned} & \mathbf{A}^{\mathrm{T}} \mathbf{A}=\left(\begin{array}{lll} 0 & 1 & 1 \\ 1 & 1 & 0 \end{array}\right)\left(\begin{array}{ll} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{array}\right)=\left(\begin{array}{ll} 2 & 1 \\ 1 & 2 \end{array}\right) \\ & \mathbf{A A}^{\mathrm{T}}=\left(\begin{array}{ll} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{array}\right)\left(\begin{array}{lll} 0 & 1 & 1 \\ 1 & 1 & 0 \end{array}\right)=\left(\begin{array}{lll} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{array}\right) \\ & \end{aligned} ATA=(011110) 011110 =(2112)AAT= 011110 (011110)= 110121011 - 进而分别求出 A T A \boldsymbol{A}^T \boldsymbol{A} ATA 和 A A T \boldsymbol{A} \boldsymbol{A}^T AAT 的特征值和特征向量:
A T A : λ 1 = 3 ; v 1 = ( 1 / 2 1 / 2 ) ; λ 2 = 1 ; v 2 = ( − 1 / 2 1 / 2 ) A A T : λ 1 = 3 ; u 1 = ( 1 / 6 2 / 6 1 / 6 ) ; λ 2 = 1 ; u 2 = ( 1 / 2 0 − 1 / 2 ) ; λ 3 = 0 ; u 3 = ( 1 / 3 − 1 / 3 1 / 3 ) \begin{aligned} & \boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{A}: \lambda_1=3 ; \mathrm{v}_1=\binom{1 / \sqrt{2}}{1 / \sqrt{2}} ; \lambda_2=1 ; \mathrm{v}_2=\binom{-1 / \sqrt{2}}{1 / \sqrt{2}} \\ & \boldsymbol{A} \boldsymbol{A}^T: \lambda_1=3 ; \mathrm{u}_1=\left(\begin{array}{c} 1 / \sqrt{6} \\ 2 / \sqrt{6} \\ 1 / \sqrt{6} \end{array}\right) ; \lambda_2=1 ; \mathrm{u}_2=\left(\begin{array}{c} 1 / \sqrt{2} \\ 0 \\ -1 / \sqrt{2} \end{array}\right) ; \lambda_3=0 ; \mathrm{u}_3= \\ & \left(\begin{array}{c} 1 / \sqrt{3} \\ -1 / \sqrt{3} \\ 1 / \sqrt{3} \end{array}\right) \end{aligned} ATA:λ1=3;v1=(1/21/2);λ2=1;v2=(1/2−1/2)AAT:λ1=3;u1= 1/62/61/6 ;λ2=1;u2= 1/20−1/2 ;λ3=0;u3= 1/3−1/31/3
利用 A v i = σ i u i , i = 1 , 2 A v_i=\sigma_i u_i, i=1,2 Avi=σiui,i=1,2 求奇异值:
( 0 1 1 1 1 0 ) ( 1 / 2 1 / 2 ) = σ 1 ( 1 / 6 2 / 6 1 / 6 ) ⇒ σ 1 = 3 ( 0 1 1 1 1 0 ) ( − 1 / 2 1 / 2 ) = σ 2 ( 1 / 2 0 − 1 / 2 ) ⇒ σ 2 = 1 \begin{aligned} & \left(\begin{array}{ll} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{array}\right)\binom{1 / \sqrt{2}}{1 / \sqrt{2}}=\sigma_1\left(\begin{array}{l} 1 / \sqrt{6} \\ 2 / \sqrt{6} \\ 1 / \sqrt{6} \end{array}\right) \Rightarrow \sigma_1=\sqrt{3} \\ & \left(\begin{array}{ll} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{array}\right)\binom{-1 / \sqrt{2}}{1 / \sqrt{2}}=\sigma_2\left(\begin{array}{c} 1 / \sqrt{2} \\ 0 \\ -1 / \sqrt{2} \end{array}\right) \Rightarrow \sigma_2=1 \end{aligned} 011110 (1/21/2)=σ1 1/62/61/6 ⇒σ1=3 011110 (1/2−1/2)=σ2 1/20−1/2 ⇒σ2=1
也可以用 σ i = λ i \sigma_i=\sqrt{\lambda_i} σi=λi 直接求!
再利用左奇异值求解公式,可得左奇异值。
最终得到A的奇异值分解为:
A = U Σ V T = ( 1 / 6 1 / 2 1 / 3 2 / 6 0 − 1 / 3 1 / 6 − 1 / 2 1 / 3 ) ( 3 0 0 1 0 0 ) ( 1 / 2 1 / 2 − 1 / 2 1 / 2 ) \mathrm{A}=\mathrm{U} \Sigma \mathrm{V}^{\mathrm{T}}=\left(\begin{array}{ccc} 1 / \sqrt{6} & 1 / \sqrt{2} & 1 / \sqrt{3} \\ 2 / \sqrt{6} & 0 & -1 / \sqrt{3} \\ 1 / \sqrt{6} & -1 / \sqrt{2} & 1 / \sqrt{3} \end{array}\right)\left(\begin{array}{cc} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{array}\right)\left(\begin{array}{cc} 1 / \sqrt{2} & 1 / \sqrt{2} \\ -1 / \sqrt{2} & 1 / \sqrt{2} \end{array}\right) A=UΣVT= 1/62/61/61/20−1/21/3−1/31/3 300010 (1/2−1/21/21/2)
相关文章:
张量分解(4)——SVD奇异值分解
🍅 写在前面 👨🎓 博主介绍:大家好,这里是hyk写算法了吗,一枚致力于学习算法和人工智能领域的小菜鸟。 🔎个人主页:主页链接(欢迎各位大佬光临指导) ⭐️近…...
第三方配件也能适配苹果了,iOS 18与iPadOS 18将支持快速配对
苹果公司以其对用户体验的不懈追求和对创新技术的不断探索而闻名。随着iOS 18和iPadOS 18的发布,苹果再次证明了其在移动操作系统领域的领先地位。 最新系统版本中的一项引人注目的功能,便是对蓝牙和Wi-Fi配件的配对方式进行了重大改进,不仅…...
Docker 部署 Nginx 并在容器内配置申请免费 SSL 证书
文章目录 dockerdocker-compose.yml申请免费 SSL 证书请求头参数带下划线 docker https://hub.docker.com/_/nginx docker pull nginx:1.27注: 国内网络原因无法下载镜像,nginx 镜像文件下载链接 https://pan.baidu.com/s/1O35cPbx6AHWUJL1v5-REzA?pw…...
模型评估与选择
2.1 经验误差与过拟合 错误率(error rate): 分类错误的样本数占样本总数的比例 精度(accuracy):1- 错误率 训练误差 / 经验误差:在训练集上的误差 泛化误差:在新样本上的误差 过…...
有必要把共享服务器升级到VPS吗?
根据自己的需求来选择是否升级,虚拟专用服务器 (VPS) 是一种托管解决方案,它以低得多的成本提供专用服务器的大部分功能。使用 VPS,您的虚拟服务器将与在其上运行的其他虚拟服务器共享硬件服务器的资源。但是,与传统的共享托管&am…...
LLM代理应用实战:构建Plotly数据可视化代理
如果你尝试过像ChatGPT这样的LLM,就会知道它们几乎可以为任何语言或包生成代码。但是仅仅依靠LLM是有局限的。对于数据可视化的问题我们需要提供一下的内容 描述数据:模型本身并不知道数据集的细节,比如列名和行细节。手动提供这些信息可能很麻烦&#…...
大模型系列3--pytorch dataloader的原理
pytorch dataloader运行原理 1. 背景2. 环境搭建2.1. 安装WSL & vscode2.2. 安装conda & pytorch_gpu环境 & pytorch 2.112.3 命令行验证python环境2.4. vscode启用pytorch_cpu虚拟环境 3. 调试工具3.1. vscode 断点调试3.2. py-spy代码栈探测3.3. gdb attach3.4. …...
SQLServer 如何设置端口
在SQL Server中,可以通过以下步骤设置端口: 打开SQL Server配置管理器。可以在开始菜单中搜索“SQL Server配置管理器”来找到它。 在左侧导航窗格中,展开“SQL Server网络配置”节点。 选择你要配置的实例,如“SQL Server Netw…...
调整网络安全策略以适应不断升级的威胁形势
关键网络安全统计数据和趋势 当今数字时代网络安全的重要性...
(leetcode学习)9. 回文数
给你一个整数 x ,如果 x 是一个回文整数,返回 true ;否则,返回 false 。 回文数 是指正序(从左向右)和倒序(从右向左)读都是一样的整数。 例如,121 是回文,而…...
QT VTK 简单测试工程
目录 1 目录结构 2 文件源码 3 运行结果 4 报错及处理 使用编译好的VTK库进行测试 1 目录结构 2 文件源码 Pro文件 QT core guigreaterThan(QT_MAJOR_VERSION, 4): QT widgetsCONFIG c17# You can make your code fail to compile if it uses deprecated APIs. #…...
ES6 Generator函数的异步应用 (八)
ES6 Generator 函数的异步应用主要通过与 Promise 配合使用来实现。这种模式被称为 “thunk” 模式,它允许你编写看起来是同步的异步代码。 特性: 暂停执行:当 Generator 函数遇到 yield 表达式时,它会暂停执行,等待 …...
Navicat:打造高效数据库管理之道
1. 导言 1.1 介绍Navicat Navicat是一款功能强大的数据库管理工具,旨在帮助用户高效地管理多种类型的数据库,包括MySQL、PostgreSQL、Oracle、SQL Server等。通过Navicat,用户可以轻松地进行数据库的创建、编辑、备份、同步和调试等操作,极大地简化了数据库管理的复杂性。…...
Python和C++全球导航卫星系统和机器人姿态触觉感知二分图算法
🎯要点 🎯马尔可夫随机场网格推理学习 | 🎯二维伊辛模型四连网格模型推理 | 🎯统计物理学模型扰动与最大乘积二值反卷积 | 🎯受限玻尔兹曼机扰动和最大乘积采样 | 🎯视觉概率生成模型测试图像 dz…...
Unity 优化合集
1️⃣ 贴图优化 1. Read/Write Enable 这个属性勾选后允许你在运行时读取和写入纹理数据,这对于需要实时生成内容或者需要动态修改纹理的场合非常有用但在大部分情况下这是不必要的。如果打开这个属性,会使运行时贴图大小翻倍,内存中会额外…...
第九届MathorCup高校数学建模挑战赛-A题:基于数据驱动的城市轨道交通网络优化研究
目录 摘 要 一、 问题的提出 二、 基本假设 三、 符号说明 四、 问题分析 4.1 问题 1 的分析 4.2 问题 2 的分析 4.3 问题 3 的分析 4.4 问题 4 的分析 五、 问题 1 的模型建立与求解 5.1 问题分析 5.2 数据处理 5.2.1 数据统计 5.2.2 异常数据处理方法 5.2.3 剔除异常数据值 5…...
Spring webflux基础核心技术
一、 用操作符转换响应式流 1 、 映射响应式流元素 转换序列的最自然方式是将每个元素映射到一个新值。 Flux 和 Mono 给出了 map 操作符,具有 map(Function<T,R>) 签名的方法可用于逐个处理元素。 当操作符将元素的类型从 T 转变为 R 时…...
关闭Ubuntu烦人的apport
先来看让人绷不住的(恼) 我查半天apport是啥玩意发现就一错误报告弹窗,十秒钟给我弹一次一天给我内存弹爆了 就算我程序就算真的不停崩溃,也没你这傻比apport杀伤性强啊??? 原则上是不建议关闭…...
海事无人机解决方案
海事巡察 海事巡察现状 巡查效率低下,存在视野盲区,耗时长,人力成本高。 海事的职能 统一管理水上交通安全和防治船舶污染。 管理通航秩序、通航环境。负责水域的划定和监督管理,维护水 上交通秩序;核定船舶靠泊安…...
Docker--在linux安装软件
Docker 引用Docker原因是在linux中安装软件 以前在linux中安装软件,是直接安装在linux操作系统上,软件和操作系统耦合度很高,不方便管理,因为linux版本不同,环境也就改变了 docker是一种容器技术,提供标…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
PL0语法,分析器实现!
简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...
基于Java+MySQL实现(GUI)客户管理系统
客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息,对客户进行统一管理,可以把所有客户信息录入系统,进行维护和统计功能。可通过文件的方式保存相关录入数据,对…...
虚拟电厂发展三大趋势:市场化、技术主导、车网互联
市场化:从政策驱动到多元盈利 政策全面赋能 2025年4月,国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》,首次明确虚拟电厂为“独立市场主体”,提出硬性目标:2027年全国调节能力≥2000万千瓦࿰…...
淘宝扭蛋机小程序系统开发:打造互动性强的购物平台
淘宝扭蛋机小程序系统的开发,旨在打造一个互动性强的购物平台,让用户在购物的同时,能够享受到更多的乐趣和惊喜。 淘宝扭蛋机小程序系统拥有丰富的互动功能。用户可以通过虚拟摇杆操作扭蛋机,实现旋转、抽拉等动作,增…...
Python网页自动化Selenium中文文档
1. 安装 1.1. 安装 Selenium Python bindings 提供了一个简单的API,让你使用Selenium WebDriver来编写功能/校验测试。 通过Selenium Python的API,你可以非常直观的使用Selenium WebDriver的所有功能。 Selenium Python bindings 使用非常简洁方便的A…...
表单设计器拖拽对象时添加属性
背景:因为项目需要。自写设计器。遇到的坑在此记录 使用的拖拽组件时vuedraggable。下面放上局部示例截图。 坑1。draggable标签在拖拽时可以获取到被拖拽的对象属性定义 要使用 :clone, 而不是clone。我想应该是因为draggable标签比较特。另外在使用**:clone时要将…...
基于Uniapp的HarmonyOS 5.0体育应用开发攻略
一、技术架构设计 1.混合开发框架选型 (1)使用Uniapp 3.8版本支持ArkTS编译 (2)通过uni-harmony插件调用原生能力 (3)分层架构设计: graph TDA[UI层] -->|Vue语法| B(Uniapp框架)B --&g…...
