模型评估与选择
2.1 经验误差与过拟合
错误率(error rate): 分类错误的样本数占样本总数的比例
精度(accuracy):1- 错误率
训练误差 / 经验误差:在训练集上的误差
泛化误差:在新样本上的误差
过拟合
欠拟合
2.2 评估方法
测试集:测试学习器对新样本的判别能力,以测试集上的“测试误差”作为泛化误差的近似
对数据集进行适当的处理,拆分成训练集和测试集,常用的处理方法:
2.2.1 留出法
直接将数据集划分为两个互斥的集合
2.2.2 交叉验证法
将数据集划分为k个大小相似的互斥子集。每次用k-1个子集的并集作为训练集,余下的子集作为测试集合,得到k组训练/测试集,从而进行k次训练和测试,最终返回这k个测试结果的均值。

2.2.4 调参与最终模型
2.3 性能度量
性能度量:衡量模型泛化能力的评价标准
2.3.1 错误率与精度
分类任务中最常用的两种性能度量:错误率,精度
错误率:分类错误的样本数占样本总数的比例
精度:分类正确的样本数占样本总数的比例


2.3.2 查准率,查全率与F1
“查准率” (精确率 precision)
“查全率”(召回率 recall)
对于二分类问题,可以将样例根据其真实类别与学习器预测类别的组合划分为:
- 真正例(true positive):正例里面被预测为正例
- 假正例(false positive):反例里面被预测为正例
- 真反例(true negative):反例里面被预测为反例
- 假反例(false negative):正例里面被预测为反例
令 TP,FP,TN,FN 分别表示其对应的样例数,则有

精确率与召回率 的定义如下:


“平衡点”(Break-Event Point):精确率 == 召回率时的取值
但是 BEP 过于简化,更常用的是F1度量:

2.3.3 ROC 与 AUC
与P-R曲线类似,我们根据学习器的预测结果对样例进行排序,按此顺序逐个把样本作为正例进行预测,每次计算出两个重要量的值,分别作为横、纵坐标做图。
ROC曲线的的横轴为:假正例率 FP
ROC曲线的的纵轴为:真正例率 TP


2.3.4 代价敏感错误率与代价曲线
代价敏感错误率
不同类型的错误所造成的后果或者代价是不同的,代价敏感错误率是基于非均等代价的。二分类代价矩阵:costij表示将第i类样本预测为第j类样本的代价。一般说来,costii=0;若将第0类判别为第1类所造成的损失更大,则cost01> cost10;在非均等错误代价下,我们希望的是最小化“总体代价”,这样“代价敏感”的错误率为:


2.4 比较检验
使用某种实验评估方法测得学习器的某个性能度量结果,然后对这些结果进行比较。
是直接取得性能度量的值比“大小”吗?
实际上比较复杂,涉及到几个重要因素:
- 希望比较的是泛化能力。然而获得的是测试集上的性能,测试集也是样本,可能包括的不全;
- 测试集上的性能与测试集本身的选择有很大关系,且不论使用不同大小的测试集会得到不同的结果,(即使使用相同大小的测试集,若包含的测试样例不同,测试结果也会有不同)
- 机器学习算法本身具有一定的随机性,即便使用相同的参数设置在同一个测试集上多次运行,其结果也会有不同。
相关文章:
模型评估与选择
2.1 经验误差与过拟合 错误率(error rate): 分类错误的样本数占样本总数的比例 精度(accuracy):1- 错误率 训练误差 / 经验误差:在训练集上的误差 泛化误差:在新样本上的误差 过…...
有必要把共享服务器升级到VPS吗?
根据自己的需求来选择是否升级,虚拟专用服务器 (VPS) 是一种托管解决方案,它以低得多的成本提供专用服务器的大部分功能。使用 VPS,您的虚拟服务器将与在其上运行的其他虚拟服务器共享硬件服务器的资源。但是,与传统的共享托管&am…...
LLM代理应用实战:构建Plotly数据可视化代理
如果你尝试过像ChatGPT这样的LLM,就会知道它们几乎可以为任何语言或包生成代码。但是仅仅依靠LLM是有局限的。对于数据可视化的问题我们需要提供一下的内容 描述数据:模型本身并不知道数据集的细节,比如列名和行细节。手动提供这些信息可能很麻烦&#…...
大模型系列3--pytorch dataloader的原理
pytorch dataloader运行原理 1. 背景2. 环境搭建2.1. 安装WSL & vscode2.2. 安装conda & pytorch_gpu环境 & pytorch 2.112.3 命令行验证python环境2.4. vscode启用pytorch_cpu虚拟环境 3. 调试工具3.1. vscode 断点调试3.2. py-spy代码栈探测3.3. gdb attach3.4. …...
SQLServer 如何设置端口
在SQL Server中,可以通过以下步骤设置端口: 打开SQL Server配置管理器。可以在开始菜单中搜索“SQL Server配置管理器”来找到它。 在左侧导航窗格中,展开“SQL Server网络配置”节点。 选择你要配置的实例,如“SQL Server Netw…...
调整网络安全策略以适应不断升级的威胁形势
关键网络安全统计数据和趋势 当今数字时代网络安全的重要性...
(leetcode学习)9. 回文数
给你一个整数 x ,如果 x 是一个回文整数,返回 true ;否则,返回 false 。 回文数 是指正序(从左向右)和倒序(从右向左)读都是一样的整数。 例如,121 是回文,而…...
QT VTK 简单测试工程
目录 1 目录结构 2 文件源码 3 运行结果 4 报错及处理 使用编译好的VTK库进行测试 1 目录结构 2 文件源码 Pro文件 QT core guigreaterThan(QT_MAJOR_VERSION, 4): QT widgetsCONFIG c17# You can make your code fail to compile if it uses deprecated APIs. #…...
ES6 Generator函数的异步应用 (八)
ES6 Generator 函数的异步应用主要通过与 Promise 配合使用来实现。这种模式被称为 “thunk” 模式,它允许你编写看起来是同步的异步代码。 特性: 暂停执行:当 Generator 函数遇到 yield 表达式时,它会暂停执行,等待 …...
Navicat:打造高效数据库管理之道
1. 导言 1.1 介绍Navicat Navicat是一款功能强大的数据库管理工具,旨在帮助用户高效地管理多种类型的数据库,包括MySQL、PostgreSQL、Oracle、SQL Server等。通过Navicat,用户可以轻松地进行数据库的创建、编辑、备份、同步和调试等操作,极大地简化了数据库管理的复杂性。…...
Python和C++全球导航卫星系统和机器人姿态触觉感知二分图算法
🎯要点 🎯马尔可夫随机场网格推理学习 | 🎯二维伊辛模型四连网格模型推理 | 🎯统计物理学模型扰动与最大乘积二值反卷积 | 🎯受限玻尔兹曼机扰动和最大乘积采样 | 🎯视觉概率生成模型测试图像 dz…...
Unity 优化合集
1️⃣ 贴图优化 1. Read/Write Enable 这个属性勾选后允许你在运行时读取和写入纹理数据,这对于需要实时生成内容或者需要动态修改纹理的场合非常有用但在大部分情况下这是不必要的。如果打开这个属性,会使运行时贴图大小翻倍,内存中会额外…...
第九届MathorCup高校数学建模挑战赛-A题:基于数据驱动的城市轨道交通网络优化研究
目录 摘 要 一、 问题的提出 二、 基本假设 三、 符号说明 四、 问题分析 4.1 问题 1 的分析 4.2 问题 2 的分析 4.3 问题 3 的分析 4.4 问题 4 的分析 五、 问题 1 的模型建立与求解 5.1 问题分析 5.2 数据处理 5.2.1 数据统计 5.2.2 异常数据处理方法 5.2.3 剔除异常数据值 5…...
Spring webflux基础核心技术
一、 用操作符转换响应式流 1 、 映射响应式流元素 转换序列的最自然方式是将每个元素映射到一个新值。 Flux 和 Mono 给出了 map 操作符,具有 map(Function<T,R>) 签名的方法可用于逐个处理元素。 当操作符将元素的类型从 T 转变为 R 时…...
关闭Ubuntu烦人的apport
先来看让人绷不住的(恼) 我查半天apport是啥玩意发现就一错误报告弹窗,十秒钟给我弹一次一天给我内存弹爆了 就算我程序就算真的不停崩溃,也没你这傻比apport杀伤性强啊??? 原则上是不建议关闭…...
海事无人机解决方案
海事巡察 海事巡察现状 巡查效率低下,存在视野盲区,耗时长,人力成本高。 海事的职能 统一管理水上交通安全和防治船舶污染。 管理通航秩序、通航环境。负责水域的划定和监督管理,维护水 上交通秩序;核定船舶靠泊安…...
Docker--在linux安装软件
Docker 引用Docker原因是在linux中安装软件 以前在linux中安装软件,是直接安装在linux操作系统上,软件和操作系统耦合度很高,不方便管理,因为linux版本不同,环境也就改变了 docker是一种容器技术,提供标…...
知识库与RAG
认识知识库的技术原理 第一步:📖➡️📈将文档的文本转换为向量,向量存储到向量数据库。第二步:🗨️➡️🔍将用户的提问内容转换成向量,在向量数据库中检索相似的文本内容࿰…...
【2024最新】C++扫描线算法介绍+实战例题
扫描线介绍:OI-Wiki 【简单】一维扫描线(差分优化) 网上一维扫描线很少有人讲,可能认为它太简单了吧,也可能认为这应该算在差分里(事实上讲差分的文章里也几乎没有扫描线的影子)。但我认为&am…...
语言主要是一种交流工具,而不是思维工具?GPT5何去何从?
引言 在人工智能领域,特别是大语言模型(LLM)的发展中,语言和思维的关系一直是一个备受关注的话题。近期,麻省理工学院(MIT)在《Nature》杂志上发表了一篇题为《Language is primarily a tool f…...
网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
在四层代理中还原真实客户端ngx_stream_realip_module
一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...
C++使用 new 来创建动态数组
问题: 不能使用变量定义数组大小 原因: 这是因为数组在内存中是连续存储的,编译器需要在编译阶段就确定数组的大小,以便正确地分配内存空间。如果允许使用变量来定义数组的大小,那么编译器就无法在编译时确定数组的大…...
基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解
JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用,结合SQLite数据库实现联系人管理功能,并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能,同时可以最小化到系统…...
深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...
Java求职者面试指南:计算机基础与源码原理深度解析
Java求职者面试指南:计算机基础与源码原理深度解析 第一轮提问:基础概念问题 1. 请解释什么是进程和线程的区别? 面试官:进程是程序的一次执行过程,是系统进行资源分配和调度的基本单位;而线程是进程中的…...
高端性能封装正在突破性能壁垒,其芯片集成技术助力人工智能革命。
2024 年,高端封装市场规模为 80 亿美元,预计到 2030 年将超过 280 亿美元,2024-2030 年复合年增长率为 23%。 细分到各个终端市场,最大的高端性能封装市场是“电信和基础设施”,2024 年该市场创造了超过 67% 的收入。…...
FTXUI::Dom 模块
DOM 模块定义了分层的 FTXUI::Element 树,可用于构建复杂的终端界面,支持响应终端尺寸变化。 namespace ftxui {...// 定义文档 定义布局盒子 Element document vbox({// 设置文本 设置加粗 设置文本颜色text("The window") | bold | color(…...
python基础语法Ⅰ
python基础语法Ⅰ 常量和表达式变量是什么变量的语法1.定义变量使用变量 变量的类型1.整数2.浮点数(小数)3.字符串4.布尔5.其他 动态类型特征注释注释是什么注释的语法1.行注释2.文档字符串 注释的规范 常量和表达式 我们可以把python当作一个计算器,来进行一些算术…...
