昇思25天打卡营-mindspore-ML- Day24-基于 MindSpore 实现 BERT 对话情绪识别
学习笔记:基于MindSpore实现BERT对话情绪识别
算法原理
BERT(Bidirectional Encoder Representations from Transformers)是由Google于2018年开发的一种预训练语言表示模型。BERT的核心原理是通过在大量文本上预训练深度双向表示,从而捕捉丰富的语言特征。BERT模型采用了Transformer中的Encoder结构,并引入了Masked Language Model(MLM)和Next Sentence Prediction(NSP)两种任务来增强模型的语言理解能力。
- Masked Language Model (MLM):在训练时,随机选择一部分单词并将其替换为特殊的[Mask]标记,模型需要预测这些被掩盖的单词。
- Next Sentence Prediction (NSP):模型需要判断两个句子是否是顺序的关系。
BERT预训练完成后,可以对下游任务进行Fine-tuning,如文本分类、问答系统等。
算法应用范围
BERT模型广泛应用于自然语言处理的多个领域,包括但不限于:
- 文本分类
- 问答系统
- 命名实体识别
- 情感分析
- 机器翻译
这里BERT被应用于对话情绪识别(Emotion Detection),即识别文本中的情绪倾向,如积极、消极和中性。
代码实现步骤
- 环境配置:安装MindSpore和mindnlp库,确保版本兼容。
- 数据准备:下载并解压数据集,数据集是经过分词预处理的机器人聊天数据,包含情绪标签和对应的文本。
- 数据预处理:定义
SentimentDataset类来加载和处理数据,将文本转换为模型可接受的格式。 - 模型构建:使用
BertForSequenceClassification构建BERT模型,加载预训练权重,并设置为三分类问题。 - 训练配置:设置自动混合精度来加速训练,定义优化器和评价指标。
- 训练过程:实例化训练器,开始训练过程,并在每个epoch后保存模型的checkpoint。
- 模型评估:使用验证集对模型进行评估,记录准确率。
- 模型推理:加载最佳模型,对测试集或自定义数据进行情绪预测。
数据集内容
数据集由百度飞桨团队提供,包含已标注的机器人聊天数据,数据格式为两列,用制表符分隔:
- 第一列:情绪分类的类别(0表示消极;1表示中性;2表示积极)
- 第二列:以空格分词的中文文本
数据集包含训练集、验证集、测试集和推理集,文件分别为train.tsv、dev.tsv、test.tsv和infer.tsv。
总结
本文档给出了BERT模型的原理和应用,以及如何使用MindSpore框架实现对话情绪识别任务。从数据准备到模型训练、评估和推理,整个过程提供了一个完整的机器学习项目实践。
相关文章:
昇思25天打卡营-mindspore-ML- Day24-基于 MindSpore 实现 BERT 对话情绪识别
学习笔记:基于MindSpore实现BERT对话情绪识别 算法原理 BERT(Bidirectional Encoder Representations from Transformers)是由Google于2018年开发的一种预训练语言表示模型。BERT的核心原理是通过在大量文本上预训练深度双向表示࿰…...
【精品资料】模块化数据中心解决方案(33页PPT)
引言:模块化数据中心解决方案是一种创新的数据中心设计和部署策略,旨在提高数据中心的灵活性、可扩展性和效率。这种方案通过将数据中心的基础设施、计算、存储和网络资源封装到标准化的模块中,实现了快速部署、易于管理和高效运维的目标 方案…...
N6 word2vec文本分类
🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊# 前言 前言 上周学习了训练word2vec模型,这周进行相关实战 1. 导入所需库和设备配置 import torch import torch.nn as nn import torchvision …...
excel、word、ppt 下载安装步骤整理
请按照我的步骤开始操作,注意以下截图红框标记处(往往都是需要点击的地方) 第一步:下载 首先进入office下载网址: otp.landian.vip 然后点击下载 拉到下方 下载站点(这里根据自己的需要选择下载&#x…...
【python学习】标准库之日期和时间库定义、功能、使用场景和示例
引言 datetime模块最初是由 Alex Martelli 在 Python 2.3 版本引入的,目的是为了解决之前版本中处理日期和时间时存在的限制和不便 在datetime模块出现之前,Python 主要使用time模块来处理时间相关的功能,但 time模块主要基于 Unix 纪元时间&…...
Android --- Kotlin学习之路:基础语法学习笔记
------>可读可写变量 var name: String "Hello World";------>只读变量 val name: String "Hello World"------>类型推断 val name: String "Hello World" 可以写成 val name "Hello World"------>基本数据类型 1…...
嵌入式智能手表项目实现分享
简介 这是一个基于STM32F411CUE6和FreeRTOS和LVGL的低成本的超多功能的STM32智能手表~ 推荐 如果觉得这个手表的硬件难做,又想学习相关的东西,可以试下这个新出的开发板,功能和例程demo更多!FriPi炸鸡派STM32F411开发板: 【STM32开发板】 FryPi炸鸡派 - 嘉立创EDA开源硬件平…...
`nmap`模块是一个用于与Nmap安全扫描器交互的库
在Python中,nmap模块是一个用于与Nmap安全扫描器交互的库。Nmap(Network Mapper)是一个开源工具,用于发现网络上的设备和服务。虽然Python的nmap模块可能不是官方的Nmap库(因为Nmap本身是用C/C编写的)&…...
JVM系列 | 对象的创建与存储
JVM系列 | 对象的生命周期1 对象的创建与存储 文章目录 前言对象的创建过程内存空间的分配方式方式1 | 指针碰撞方式2 | 空闲列表 线程安全问题 | 避免空间冲突的方式方式1 | 同步处理(加锁)方式2 | 本地线程分配缓存 对象的内存布局Part1 | 对象头Mark Word类型指针…...
【JavaScript 算法】快速排序:高效的排序算法
🔥 个人主页:空白诗 文章目录 一、算法原理二、算法实现三、应用场景四、优化与扩展五、总结 快速排序(Quick Sort)是一种高效的排序算法,通过分治法将数组分为较小的子数组,递归地排序子数组。快速排序通常…...
Excel如何才能忽略隐藏行进行复制粘贴?
你有没有遇到这样的情况:数据很多,将一些数据隐藏后,进行复制粘贴,结果发现粘贴后的内容仍然将整个数据都显示出来了!那么,Excel如何才能忽略隐藏行进行复制粘贴? 打开你的Excel表格 Excel如何…...
行人越界检测 越线 越界区域 多边形IOU越界判断
行人越界判断 越界判断方式:(1)bbox中心点越界(或自定义)(2)交并比IoU判断 越界类型:(1)越线 (2)越界区域 1.越线判断 bbox中心点xc、…...
「UCD」浅谈蓝湖Figma交互设计对齐
在现代数字产品的设计和开发过程中,选择合适的工具对于提高团队效率和保证产品质量至关重要。本文将从开发和设计两个不同的角度,探讨蓝湖和Figma两款流行工具的优势与不足,并提出结论和建议。 开发研发视角:蓝湖 优点: 清晰的设计规范:蓝湖为开发工程师提供了清晰的设计…...
VUE3 播放RTSP实时、回放(NVR录像机)视频流(使用WebRTC)
1、下载webrtc-streamer,下载的最新window版本 Releases mpromonet/webrtc-streamer GitHub 2、解压下载包 3、webrtc-streamer.exe启动服务 (注意:这里可以通过当前文件夹下用cmd命令webrtc-streamer.exe -o这样占用cpu会很少,…...
[PaddlePaddle飞桨] PaddleOCR-光学字符识别-小模型部署
PaddleOCR的GitHub项目地址 推荐环境: PaddlePaddle > 2.1.2 Python > 3.7 CUDA > 10.1 CUDNN > 7.6pip下载指令: python -m pip install paddlepaddle-gpu2.5.1 -i https://pypi.tuna.tsinghua.edu.cn/simple pip install paddleocr2.7…...
Python应用开发——30天学习Streamlit Python包进行APP的构建(15):优化性能并为应用程序添加状态
Caching and state 优化性能并为应用程序添加状态! Caching 缓存 Streamlit 为数据和全局资源提供了强大的缓存原语。即使从网络加载数据、处理大型数据集或执行昂贵的计算,它们也能让您的应用程序保持高性能。 本页仅包含有关 st.cache_data API 的信息。如需深入了解缓…...
python实现openssl的EVP_BytesToKey及AES_256_CBC加解密算法
python实现openssl EVP_BytesToKey(EVP_aes_256_cbc(), EVP_md5(), NULL, pass, passlen, 1, key, iv); 并实现AES 256 CBC加解密. # encoding:utf-8import base64 from Crypto.Cipher import AES from Crypto import Random from hashlib import md5def EVP_BytesToKey(passw…...
基于SpringBoot+VueJS+微信小程序技术的图书森林共享小程序设计与实现
注:每个学校每个老师对论文的格式要求不一样,故本论文只供参考,本论文页数达到60页以上,字数在6000及以上。 基于SpringBootVueJS微信小程序技术的图书森林共享小程序设计与实现 目录 基于SpringBootVueJS微信小程序技术的图书森…...
【css】image 使用 transform:scale 放大后显示不全的问题
css 可以用 transform: scale(1.2) 实现图片放大 1.2 倍显示的功能,在此基础上可以修改 transform-origin 为用户点击的坐标值优化体验。问题在于 origin 位于图片下方时,图片放大后出现滚动条,而滚动条的高度会忽略放大显示的图片的上半部分…...
损失函数简介
损失函数(Loss Function)是机器学习中用来衡量模型预测值与真实值之间差异的函数。在训练过程中,通过最小化损失函数来优化模型的参数,以提高模型的预测准确性。 以下是损失函数的主要用途和一些常用的损失函数类型: 损失函数的用途: 评估模型性能:损失函数提供了一个…...
五年级数学知识边界总结思考-下册
目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解:由来、作用与意义**一、知识点核心内容****二、知识点的由来:从生活实践到数学抽象****三、知识的作用:解决实际问题的工具****四、学习的意义:培养核心素养…...
全志A40i android7.1 调试信息打印串口由uart0改为uart3
一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...
算法笔记2
1.字符串拼接最好用StringBuilder,不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...
中医有效性探讨
文章目录 西医是如何发展到以生物化学为药理基础的现代医学?传统医学奠基期(远古 - 17 世纪)近代医学转型期(17 世纪 - 19 世纪末)现代医学成熟期(20世纪至今) 中医的源远流长和一脉相承远古至…...
【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)
本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...
免费PDF转图片工具
免费PDF转图片工具 一款简单易用的PDF转图片工具,可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件,也不需要在线上传文件,保护您的隐私。 工具截图 主要特点 🚀 快速转换:本地转换,无需等待上…...
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
基于Springboot+Vue的办公管理系统
角色: 管理员、员工 技术: 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能: 该办公管理系统是一个综合性的企业内部管理平台,旨在提升企业运营效率和员工管理水…...
