震撼,支持多模态模型的ChatGPT 4.0发布了
最近几个月,互联网和科技圈几乎ChatGPT刷屏了,各种关于ChatGPT的概念和应用的帖子也是围绕在周围。当去年年底ChatGPT发布的那几天,ChatGPT确实震撼到了所有人,原来AI还可以这么玩,并且对国内的那些所谓的人工智能公司更是旁敲侧击。
3月9日,微软德国CTO Andreas Braun(布劳恩)在一场AI活动中表示,GPT4将于下周发布,并且是多模态模型,不仅仅局限于文字,还包括视频等。所以,GPT4有何不同,它与较早发布的GPT3,也就是我们在1月份用到的ChatGPT有何区别?都是我们比较敢兴趣的话题。
事实上,GPT3(Generative Pre-trained Transformer 3)和GPT4(Generative Pre-trained Transformer 4)是自然语言处理(NLP)中最先进的预训练模型。OpenAI最初推出GPT3时,它具备175亿个参数,是当时人工智能历史上规模最大的语言模型之一。
这个记录并没有保持多久,很快OpenAI发布了GPT3.5。这是一个在GPT3和GPT4之间的过渡模型,它有1750亿个机器学习参数,比GPT3的175亿参数多了10倍。GPT4则是OpenAI即将发布的下一代语言模型,有预测认为它将拥有超过10万亿的参数,是GPT3.5参数的57倍。
那GPT 4究竟有多么厉害呢?今日凌晨,万众瞩目的大型多模态模型GPT 4正式发布了。
同时,OpenAI发文称,GPT-4能接受图像和文本输入,输出文本内容,虽然在许多现实场景中的能力不如人类,但在各种专业和学术基准测试中已做到人类水平的表现。它强大到什么程度呢?输入一张手绘草图,GPT-4能直接生成最终设计的网页代码。
同时,在各种标准化考试中,GPT-4更是SAT拿下700分,GRE几乎满分,逻辑能力吊打GPT-3.5。
GPT-4在高级推理能力上超越ChatGPT。在律师模拟考试中,ChatGPT背后的GPT-3.5排名在倒数10%左右,而GPT-4考到了前10%左右。
GPT-4的长度限制提升到32K tokens,即能处理超过25000个单词的文本,并且可以使用长格式内容创建、扩展对话、文档搜索和分析等。
OpenAI正通过ChatGPT和API发布GPT-4的文本输入功能,图像输入功能暂未开放。ChatGPT plus订阅者可直接获得有使用上限的GPT-4的试用权,4小时内最多只能发布100条信息。开发者也可以申请GPT-4 API,进入候补名单等待通过。申请链接:https://openai.com/waitlist/gpt-4-api
随着时间的推移,OpenAI会将其自动更新为推荐的稳定模型(你可以通过调用gpt-4-0314来锁定当前版本,OpenAI将支持到6月14日)。定价是每1k prompt tokens 0.03美元,每1k completion tokens 0.06美元。默认速率限制是每分钟40k tokens和每分钟200个请求。
GPT-4的上下文长度为8192个tokens。还提供对32768个上下文(约50页文本)版本gpt-4-32k的有限访问,该版本也将随着时间的推移自动更新(当前版本gpt-4-32k-0314,也将支持到6月14日)。价格是每1k prompt tokens 0.06美元,每1K completion tokens 0.12美元。
此外,OpenAI还开源了用于自动评估AI模型性能的框架OpenAI Evals,以便开发者更好的评测模型的优缺点,从而指导团队进一步改进模型。
开源地址:github.com/openai/evals
那GPT-4究竟带来了哪些震撼的功能呢,下面我们就来一一点评一下。
GPT-4升级成“考霸”,基准测试表现大大优于现有大模型
如果是随意聊天,你可能不太能感受出GPT-3.5与GPT-4之间的区别。但当任务的复杂性达到足够的阈值时,GPT-4将明显比GPT-3.5更可靠、更有创意,并且能够处理更细微的指令。
为了了解这两种模型之间的区别,OpenAI在各种基准测试中进行了测试,包括最初为人类设计的模拟考试。他们使用了最新的公开试题(在奥林匹克竞赛和AP自由答题的情况下)或购买 2022-2023年版的模拟考试题。
OpenAI没有针对这些考试进行专门训练。在模型训练期间,考试中的少数问题被发现。但OpenAI认为结果具有代表性,详情可参见GPT-4论文(https://cdn.openai.com/papers/gpt-4.pdf)。
OpenAI还在为机器学习模型设计的传统基准测试中评估了GPT-4。GPT-4大大优于现有的大型语言模型以及大多数最先进的(SOTA)模型,其中可能包括基准特定的制作或额外的训练协议:
许多现有的机器学习(ML)基准测试都是用英语编写的。为了初步了解它在其他语言中的性能,OpenAI使用Azure Translate将MMLU基准测试(一套涵盖57个主题的14000个多项选择题)翻译成各种语言。
在测试的26种语言中的24种中,GPT-4优于GPT-3.5和其他大型语言模型(Chinchilla,PaLM)的英语表现,包括拉脱维亚语、威尔士语、斯瓦希里语等资源匮乏的语言。
OpenAI也在内部使用GPT-4,这对支持、销售、内容审核和编程等功能有很大影响。OpenAI还使用它来协助人类评估AI输出,开始了其对齐策略的第二阶段。
描述照片、看懂图表、解答论文
GPT-4可以接受文本和图像提示,这与纯文本设置并行,允许用户指定任何视觉或语言任务。具体来说,给定由穿插的文本和图像组成的输入,它能够生成自然语言、代码等文本输出。在生成带有文本和照片的文档、图表或屏幕截图等方面,GPT-4展示了与纯文本输入类似的功能。
此外,GPT-4还可以使用为纯文本语言模型开发的测试时(test-time)技术进行增强,包括少量标注数据(few-shot)和思维链(CoF,chain-of-thought)提示。图像输入仍处于研究预览阶段,尚未公开。
OpenAI在官网展示了7个视觉输入的例子。
1,描述多张图片内容,发现不合常理之处
输入一张由三张图片拼成的图,用户输入“这张图有什么奇怪的地方?一张图一张图地描述”,GPT-4会分别对每张图中的内容进行描述,并指出这幅图把一个大而过时的VGA接口插入一个小而现代的智能手机充电端口是荒谬的。
2,根据图表,推理作答
用户问格鲁吉亚和西亚的平均每日肉类消费量总和是多少,让GPT-4在给答案前提供一个循序渐进的推理,GPT-4也能按需作答。
3,看图考试
用户也可以直接给一张考试题的照片,让GPT-4一步步思考作答。
4,简练指出图片的违和之处
用户问“这张图片有什么不寻常之处”时,GPT-4简练地回答出“一名男子正在行驶中的出租车车顶上在熨衣板上熨烫衣服”。
5,阅读论文,总结摘要与解释图表
给几张论文的照片,GPT-4可以做总结,也可以对用户指定的图片的内容进行展开解释。
6,解读“鸡块地图”
让GPT-4解释图中的模因(meme),GPT-4回答说这是个笑话,结合了太空中的地球照片和鸡块这两个不相关的东西。
7,理解漫画含义
最后一个示例是让GPT-4解释这张漫画,GPT-4认为它讽刺了统计学习和神经网络在提高模型性能方面的差异。
OpenAI通过在一套狭窄的标准学术视觉基准上评估GPT-4的性能来预览。但这些数字并不能完全代表它的能力,因为OpenAI不断发现该模型能够处理的新的和令人兴奋的任务。OpenAI计划很快发布进一步的分析和评估数字,以及对测试时技术影响的彻底调查。
此外,OpenAI一直在研究其关于定义AI行为的文章中概述计划的各方面,包括可操纵性。与拥有固定冗长、语调、风格的ChatGPT不同,开发者(很快还有ChatGPT用户)现可通过在“系统”消息中描述这些方向来规定他们的AI的风格和任务。
系统消息(system messages)允许API用户在一定范围内自定义用户体验。OpenAI将在这方面继续做改进(特别是知道系统消息是“越狱”当前模型的最简单方法,即对边界的遵守并不完美),但OpenAI鼓励用户尝试一下,并将想法告知他们。
关于可操纵性,OpenAI展示了3个示例。
1,示例1
示例1是让GPT-4作为一位总是以苏格拉底风格回应的导师,不直接给学生求解某个线性方程组的答案,而是通过将那个问题拆分成更简单的部分,引导学生学会独立思考。
2,示例2
示例2是让GPT-4变成“莎士比亚的海盗”,忠于自己的个性,可以看到它在多轮对话过程中时刻保持着自己的“人设”。
3,示例3
示例3是让GPT-4成为一名AI助手,总是用json编写响应输出,然后GPT-4的回答画风就变成了这样:
最真实、最稳定、最可控
OpenAI称其团队花了6个月的时间,使用对抗性测试程序和从ChatGPT得到的经验教训,对GPT-4进行迭代调整,在真实性、可控制性等方面取得了有史以来最好的结果(仍远非完美)。
过去两年里,OpenAI重建了整个深度学习堆栈,并与微软Azure云平台一起为其工作负载从头开始共同设计了一台超级计算机。
一年前,OpenAI训练GPT-3.5作为系统的第一次“试运行”,发现并修复了一些错误并改进了其理论基础。结果,GPT-4训练运行(至少对OpenAI而言)前所未有地稳定,成为OpenAI能够提前准确预测其训练性能的第一个大型模型。
随着继续专注于可靠的扩展,OpenAI的目标是完善其方法,以帮助自身越来越多地提前预测和准备未来的能力。OpenAI认为这对安全至关重要。
与以前的GPT模型一样,GPT-4基础模型经过训练可以预测文档中的下一个单词,并且使用公开可用的数据(例如互联网数据)以及OpenAI已获得许可的数据进行训练。这些数据是网络规模的数据语料库,包括数学问题的正确和错误解决方案、弱推理和强推理、自相矛盾和一致的陈述,并代表各种各样的意识形态和想法。
因此,当有问题提示时,基础模型能以多种方式进行响应,这些方式可能与用户意图相去甚远。为了使其与护栏(guardrails)内的用户意图保持一致,OpenAI使用人类反馈强化学习(RLHF)对模型行为进行微调。
需注意的是,模型的能力似乎主要来自预训练过程——RLHF并不会提高考试成绩(如果不积极努力,它实际上会降低考试成绩)。但是模型的控制来自训练后的过程——基础模型需要快速的工程设计来知道它应该回答问题。
GPT-4的局限性
尽管功能更加强大,但GPT-4与早期的GPT模型具有相似的局限性。最重要的是,它仍然不完全可靠(存在事实性“幻觉”并出现推理错误)。在使用语言模型输出时应格外小心,特别是在高风险上下文中,使用符合特定用例需求的确切协议(例如人工审查、附加上下文的基础或完全避免高风险使用) 。
不过,GPT-4相对于以前的模型(它们本身在每次迭代中都在改进)显著减少了幻觉。在OpenAI的内部对抗性真实性评估中,GPT-4的得分比 GPT-3.5高40%。
OpenAI在TruthfulQA等外部基准测试上取得了进展,它测试了模型将事实与对抗性选择的一组错误陈述分开的能力。这些问题与事实不正确的答案相匹配,这些答案在统计上很有吸引力。
GPT-4基本模型在这项任务上只比GPT-3.5稍微好一点;但在RLHF训练(应用与GPT-3.5相同的过程)后,存在很大的差距。
检查下面的一些例子,GPT-4拒绝选择常见的谚语(你教不了老狗新技能,即“年老难学艺”),但它仍然会遗漏一些微妙的细节(埃尔维斯·普雷斯利不是演员之子)。
GPT-4普遍缺乏对绝大部分数据中断后(2021年9月)发生的事件的了解,也没有从经验中吸取教训。它有时会犯一些简单的推理错误,这些错误似乎与跨多个领域的能力不相称,或者在接受用户明显的虚假陈述时过于轻信。
有时它会像人类一样在难题上失败,例如在它生成的代码中引入安全漏洞。GPT-4也可能自信地在其预测中犯错,在可能出错时没有仔细检查工作。有趣的是,基础预训练模型经过高度校准(它对答案的预测置信度通常与正确概率相匹配)。然而,通过OpenAI目前的后训练过程,校准减少了。
OpenAI如何规避风险
OpenAI一直在对GPT-4进行迭代,以使其从训练开始就更安全、更一致。其工作包括预训练数据的选择和过滤、评估和专家参与、模型安全改进以及监控和执行。GPT-4会带来与之前模型类似的风险,例如生成有害建议、错误代码或不准确信息。同时GPT-4的附加功能会带来新的风险面。
为了了解这些风险的程度,OpenAI聘请了50多位来自AI对齐风险、网络安全、生物风险、信任和安全以及国际安全等领域的专家来对模型进行对抗性测试。他们的发现使OpenAI能够在需要专业知识进行评估的高风险领域测试模型行为。这些专家的反馈和数据用于模型改进。
GPT-4在RLHF训练期间加入了一个额外的安全奖励信号,通过训练模型拒绝对此类内容的请求来减少有害输出。奖励由GPT-4零样本分类器提供,该分类器根据安全相关提示判断安全边界和完成方式。为了防止模型拒绝有效请求,OpenAI从各种来源收集了多样化的数据集,并在允许和不允许的类别上应用安全奖励信号(具有正值或负值)。
与GPT-3.5相比,其缓解措施显著改善了GPT-4的许多安全特性,已将模型响应禁止内容请求的可能性降低了82%,并且GPT-4根据OpenAI的政策响应敏感请求(如医疗建议和自我伤害)的频率提高了29%。
总的来说,OpenAI的模型级干预提高了引发不良行为的难度,但依然无法做到完全规避。OpenAI强调目前需用部署时安全技术(如监控滥用)来补充这些限制。
GPT-4和后续模型有可能以有益和有害的方式对社会产生重大影响。OpenAI正在与外部研究人员合作,以改进理解和评估潜在影响的方式,以及对未来系统中可能出现的危险功能进行评估,并将很快分享更多关于GPT-4和其他AI系统的潜在社会和经济影响的想法。
构建可预测扩展的深度学习堆栈
GPT-4项目的一大重点是构建可预测扩展的深度学习堆栈。主要原因是,对于像GPT-4这样的非常大的训练运行,进行广泛的特定于模型的调整是不可行的。OpenAI开发的基础设施和优化在多个尺度上具有非常可预测的行为。
为了验证这种可扩展性,OpenAI通过从使用相同方法训练但计算量减少到原来的1/10000的模型进行推断,准确预测了GPT-4在其内部代码库(不属于训练集)上的最终损失:
现在OpenAI可以准确地预测其在训练期间优化的指标(损失),开始开发方法来预测更多可解释的指标,例如成功预测了HumanEval数据集子集的通过率,从计算量减少至原来的1/1000的模型推断:
有些能力仍难以预测。例如Inverse Scaling Prize是一项竞赛,目的是寻找随着模型计算量的增加而变得更糟的度量指标,而hindsight neglect是获胜者之一。就像最近的另一个结果一样,GPT-4 扭转了趋势:
OpenAI认为,准确预测未来的机器学习能力是安全的重要组成部分,但相对于其潜在影响而言,它并没有得到足够的重视。OpenAI正在加大力度开发方法,为社会提供更好的未来系统预期指导,并希望这成为该领域的共同目标。
开源软件框架Evals
OpenAI正在开源其软件框架OpenAI Evals,用于创建和运行基准测试以评估GPT-4等模型,同时逐个样本地检查它们的性能。
OpenAI使用Evals来指导其模型的开发,其用户可以应用该框架来跟踪模型版本(现在将定期发布)的性能和不断发展的产品集成。例如Stripe 使用Evals来补充他们的人工评估,以衡量其基于GPT的文档工具的准确性。
因为代码都是开源的,所以Evals支持编写新的类来实现自定义评估逻辑。但根据OpenAI的经验,许多基准测试都遵循少数“模板”之一,所以他们也囊括了内部最有用的模板(包括“模型分级评估”的模板——OpenAI发现GPT-4在检查自己的工作方面惊人地强大)。通常构建新eval最有效的方法是实例化这些模板之一,并提供数据。
OpenAI希望Evals成为一种共享和众包基准测试的工具,代表最广泛的故障模式和困难任务。作为示例,OpenAI创建了一个逻辑难题eval,其中包含十个GPT-4失败的提示。Evals也兼容现有的基准测试;OpenAI已有一些实现学术基准的笔记本和一些集成CoQA(小子集)的变体作示例。
OpenAI邀请每个人都使用Evals来测试其模型,提交最有趣的示例,给与贡献、问题和反馈。
OpenAI扩展深度学习的最新里程碑
GPT-4是OpenAI在扩展深度学习道路上的最新里程碑。OpenAI期待GPT-4成为一个有价值的工具,通过为许多应用提供动力来改善生活。
正如OpenAI所言,前方还有很多工作要做,这需要通过社区在模型之上构建、探索和贡献的集体努力,来持续将模型变得越来越强。
参考:
https://cdn.openai.com/papers/gpt-4.pdf
https://openai.com/research/gpt-4
相关文章:

震撼,支持多模态模型的ChatGPT 4.0发布了
最近几个月,互联网和科技圈几乎ChatGPT刷屏了,各种关于ChatGPT的概念和应用的帖子也是围绕在周围。当去年年底ChatGPT发布的那几天,ChatGPT确实震撼到了所有人,原来AI还可以这么玩,并且对国内的那些所谓的人工智能公司…...

IDEA常用插件列表
一 背景 IDEA常用插件列表,用来提供工作效率。你都安装了吗 IntelliJ IDEA 默认安装并提供了非常多的工具,比如 Maven Integration、Markdown support、SSH Remote Run 等。其中有很多好用,但是不为人知的工具。 二 插件列表 阿里代码规约…...

比df更好用的命令!
大家好,我是良许。 对于分析磁盘使用情况,有两个非常好用的命令:du 和 df 。简单来说,这两个命令的作用是这样的: du 命令:它是英文单词 disk usage 的简写,主要用于查看文件与目录占用多少磁…...

【Git使用学习】记录学习过程(1)
安装就省略了,安装结果如下。 Git Bash:这是一个模拟Linux环境的命令行工具,可以使用Git的所有功能。Git GUI:这是一个图形化界面的工具,可以方便地执行Git的常用操作。Git CMD:这是一个Windows命令行工具&…...

K_A18_001 基于STM32等单片机采集MQ2传感参数串口与OLED0.96双显示
K_A18_001 基于STM32等单片机采集MQ2传感参数串口与OLED0.96双显示一、资源说明二、基本参数参数引脚说明三、驱动说明IIC地址/采集通道选择/时序对应程序:四、部分代码说明1、接线引脚定义1.1、STC89C52RCMQ2传感参模块1.2、STM32F103C8T6MQ2传感参模块五、基础知识学习与相关…...

【云原生·Docker】常用命令
目录 🍁1、管理命令 🍁2、帮助命令 🍁3、镜像命令 🍁4、容器命令 🍂4.1.查看容器 🍂4.2.创建容器 🍂4.3.删除容器 🍂4.4.拷贝文件 🍂4.5.查看容器IP 🍁5、部署…...
户外露营储能电源芯片CSU3AF10
户外露营的项目有很多,随着户外储能电源的发展,越来越多的电子产品可以在户外使用,也不用担心因为在户外时间过长而手机或者其他电子产品电量耗尽。户外储能电源可保证人们随时随地的用电需求,同时也可以满足家电炊具的供电需求&a…...

无线WiFi安全渗透与攻防(八)之WEP-Hirte渗透WEP加密
WEP-渗透WEP新思路–Hirte 1.Hirte介绍 Hirte是破解无线网络WEP Key的一种攻击类型 只要客户端设备(笔记本电脑,手机等)连接过的无线网络,那些WIFI即使是不在攻击者范围内也都能被破解,因为该wifi的WEP密钥和配置文…...
前端常考面试题整理
display:none与visibility:hidden的区别 这两个属性都是让元素隐藏,不可见。两者区别如下: (1)在渲染树中 display:none会让元素完全从渲染树中消失,渲染时不会占据任何空间;visibility:hidden不会让元素…...

二十二、身份验证与权限
一、 准备工作 为了讲清楚身份验证与权限,我们再创建一个应用projects,设计模型如下: class Project(models.Model):name models.CharField(项目名称, max_length20, help_text项目名称)desc models.CharField(项目描述, max_length200, help_text项目…...

k8s pod 升级与回滚
当集群中的某个服务需要升级时,我们需要停止目前与该服务相关的所有pod,然后下载新版本镜像并创建新的pod。如果集群规模比较大,则这个工作变成了一个挑战,而且先全部停止然后逐步升级的方式会导致较长时间的服务不可用。kubernet…...

【Go】Go语言开发环境安装
【Go】Go语言开发环境安装 导入 安装环境:Winowds 我现在是win7安装的,与win10整体步骤是一样的,只是部分显示的时候有点差异不影响; 【名词】 编译器:先将代码编译成可执行文件,再执行; —…...
el-switch使用
效果图: 1.表格代码,给el-waitch加上change事件 <el-table-column prop"status" label"状态" align"center" width"150"> <template slot-sc…...

【算法入门】字符串基础
目录 一.字符串引言1.字符串基础二.洛谷P5734详解1.字符串相关库函数💫(1) strcpy函数 💫💫(2) strcat函数 💫💫(3)strstr函数 💫2.题…...

前端面试题 —— 浏览器原理(二)
目录 一、有哪些可能引起前端安全的问题? 二、网络劫持有哪几种,如何防范? 三、浏览器渲染进程的线程有哪些 四、僵尸进程和孤儿进程是什么? 五、为什么需要浏览器缓存? 六、对浏览器的理解 七、CSS 如何阻塞文档解析&…...

对于植物神经紊乱的治疗 中医采用辩证论治的方法
植物神经紊乱是由于心理压力过大、长期生活不规律所导致的一种疾病,这种疾病的发生往往是症状多样、涉及广泛的。当患有植物神经紊乱之后,主要的症状会以躯体化障碍为常见症状,但是很多患者还会出现情绪失控、睡眠障碍等问题。 对于植物神经紊…...
chatGPT之Python API启用上下文管理
chatGPT已经爆火一段时间了,我想大多数的开发者都在默默的在开发和测试当中,可能也是因为这个原因所以现在很难找到关于开发中遇到的一些坑或者方法和技巧。为什么别人的机器人能联想之前的语料,而你的却像个每次都只如初见的高冷机器人&…...

油田钻井实时在线监测系统
油田钻井的井下油层的压力不断变化,环境深度和压力巨大,且井下原油具有一定的流动性,实时在线压力监测是石油开采行业的难点。为更好地了解油田开采过程中油层的状况,提高油田开采效率和产量,油田钻井实时在线监测系统…...

经典PID控制算法原理以及优化思路
文章目录0、概念1、理解2、实现3、优化4、引用0、概念 PID算法是工业应用中最广泛算法之一,在闭环系统的控制中,可自动对控制系统进行准确且迅速的校正。PID控制,即Proportional – Integral(I) – Derivative(D) Control, 实际上是三种反馈…...
经典面试题之赋值和深浅拷贝的区别
1.区别 **赋值:**基本数据直接拷贝,互不影响,引用数据把地址赋值给新对象,新旧对象指向同一个地址。 **浅拷贝: **基本类型之间互不影响,对象只会复制对象的第一层基本数据和引用类型的地址,对象内部嵌套的…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

微信小程序之bind和catch
这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...

visual studio 2022更改主题为深色
visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中,选择 环境 -> 常规 ,将其中的颜色主题改成深色 点击确定,更改完成...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...

【JavaWeb】Docker项目部署
引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...

10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...
A2A JS SDK 完整教程:快速入门指南
目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库ÿ…...