t-SNE降维可视化并生成excel文件使用其他画图软件美化
t-sne
t-SNE(t-分布随机邻域嵌入,t-distributed Stochastic Neighbor Embedding)是由 Laurens van der Maaten 和 Geoffrey Hinton 于 2008 年提出的一种非线性降维技术。它特别适合用于高维数据的可视化。t-SNE 的主要目标是将高维数据映射到低维空间(通常是二维或三维),同时尽可能地保留高维数据中的局部结构。这使得我们可以在低维空间中更直观地观察数据的结构和分布。
t-SNE 能很好地保留高维数据的局部结构,适用于各种类型的数据,尤其是复杂的非线性数据。但它的计算复杂度较高,不适合非常大规模的数据集,对超参数(如 perplexity)较为敏感,需要仔细调参。低维空间中的全局结构不一定可靠。
可视化
要使用 t-SNE 进行数据可视化,可以使用 Python 的 scikit-learn 库。随机生成两个数据集:
import matplotlib.pyplot as plt
import numpy as np
from sklearn.manifold import TSNE# 假设这里有两个数据集,分别是 dataset1 和 dataset2
dataset1 = np.random.randn(100, 10) # 生成随机数据作为示例
dataset2 = np.random.randn(80, 10)# 合并数据集
merged_data = np.concatenate((dataset1, dataset2))# 对合并后的数据应用 t-SNE 进行降维
tsne = TSNE(n_components=2, random_state=0)
tsne_data = tsne.fit_transform(merged_data)# 将降维后的数据按照原来的数据集进行划分
tsne_data_1 = tsne_data[:len(dataset1)]
tsne_data_2 = tsne_data[len(dataset1):]# 绘制散点图
plt.scatter(tsne_data_1[:, 0], tsne_data_1[:, 1], color='b', label='Dataset 1')
plt.scatter(tsne_data_2[:, 0], tsne_data_2[:, 1], color='r', label='Dataset 2')
plt.legend()
plt.show()

根据数据集中不同的标签使用不同的颜色:
import numpy as np
import pandas as pd
from sklearn.manifold import TSNE
import matplotlib.pyplot as pltfrom utils.feature import features18_df = pd.read_csv('68.csv')X = df[features18_] # 选择需要的特征
y = df["fs"] # 根据fs标签选择不同的颜色画图# 初始化 t-SNE 模型,设置降维后的维度为 2 维
tsne = TSNE(n_components=2, perplexity=min(10, len(X)-1))# 对数据进行降维
X_tsne = tsne.fit_transform(X)# 绘制结果
plt.figure(figsize=(10, 10))
plt.scatter(X_tsne[:, 0], X_tsne[:, 1], c=y.astype(int), cmap='jet')
plt.colorbar()
plt.show()

t-SNE的参数
t-SNE 类的 init 方法定义了用于初始化 t-SNE 对象的参数。下面是这些参数的详细介绍:
n_components:int, 默认值=2
要降维到的维度数。通常设为2或3,用于可视化。
perplexity:float, 默认值=30.0
衡量数据局部结构的一个超参数。较大的 perplexity 使 t-SNE 关注更大范围的邻居数。有效范围通常在5到50之间。
early_exaggeration:float, 默认值=12.0
在早期阶段,增加距离以便于更好地形成群体结构。较高的值使得群体更加分离。
learning_rate:float 或 “auto”, 默认值=“auto”
学习率。学习率过低可能导致优化停滞,学习率过高可能导致嵌入结构被破坏。当设为 “auto” 时,学习率为 max(N / early_exaggeration / 4, 50),其中 N 是样本数。
n_iter:int, 默认值=1000
梯度下降迭代次数。增大此值可能会提升嵌入的质量。
n_iter_without_progress:int, 默认值=300
在没有进展的情况下提前终止的迭代次数。用于防止无效计算。
min_grad_norm:float, 默认值=1e-7
最小梯度范数,用于判断是否收敛。
metric:string 或 callable, 默认值=“euclidean”
用于计算高维空间距离的度量标准。默认是欧几里得距离。
metric_params:dict 或 None, 默认值=None
用于度量的额外关键字参数。
init:string 或 ndarray, 默认值=“pca”
低维嵌入的初始化方法。可以是 ‘random’ 或 ‘pca’,也可以提供一个初始位置的数组。
verbose:int, 默认值=0
控制输出的详细程度。0 表示不输出,1 或更高的值表示输出更多信息。
random_state:int, RandomState 实例或 None, 默认值=None
随机数生成器的种子。设置此参数以获得可重复的结果。
method:string, 默认值=“barnes_hut”
用于计算嵌入的算法。可选值有 ‘barnes_hut’(适用于较大数据集)和 ‘exact’(适用于较小数据集)。
angle:float, 默认值=0.5
仅在 method=‘barnes_hut’ 时使用。控制 Barnes-Hut 近似的精度,值越小精度越高,计算时间越长。
n_jobs:int 或 None, 默认值=None
并行计算的 CPU 核心数。None 表示 1,-1 表示使用所有可用的核心。
生成excel文件
用python的matplotlib库作出的图可以看,但并不完美,虽然可以通过调matplotlib的参数来使图画得更完美,但是不如使用专业的画图软件方便,比如微软的visio,爱不释手,所以我们需要将t-SNE降维的坐标点生成一个excel文件,在画图软件中导入这个excel文件,使可视化变得更完美。将t-SNE降维后的数据保存到Excel文件中,可以使用 pandas 库中的 to_excel 方法。
df = pd.DataFrame(X_tsne)
writer = pd.ExcelWriter('arr.xlsx')
df.to_excel(writer)
writer.close()
相关文章:
t-SNE降维可视化并生成excel文件使用其他画图软件美化
t-sne t-SNE(t-分布随机邻域嵌入,t-distributed Stochastic Neighbor Embedding)是由 Laurens van der Maaten 和 Geoffrey Hinton 于 2008 年提出的一种非线性降维技术。它特别适合用于高维数据的可视化。t-SNE 的主要目标是将高维数据映射…...
End-to-End Object Detection with Transformers【方法详细解读】
摘要 我们提出了一种新的方法,将目标检测视为一个直接的集合预测问题。我们的方法简化了检测流程,有效地消除了许多手工设计的组件,如非极大值抑制程序或锚生成,这些组件显式编码了我们关于任务的先验知识。新框架的主要成分,称为DEtection TRansformer或DETR,是一个基于…...
SQLite数据库与ROOM数据库
目录 1、SQLite数据库 目的: 基本操作: 缺点: 解决: 2、ROOM持久性库 目的: 优点: 导入依赖: 主要组件: 编辑 使用步骤: a.定义数据实体 b.定义数据访问对象(接…...
vue实现动态图片(gif)
目录 1. 背景 2. 分析 3. 代码实现 1. 背景 最近在项目中发现一个有意思的小需求,鼠标移入一个盒子里,然后盒子里的图就开始动起来,就像一个gif一样,然后鼠标移出,再按照原来的变化变回去,就像变形金刚…...
win11系统设置允许无密码远程桌面连接
在windows11系统中设置允许无密码远程桌面连接,可以通过以下步骤进行操作: 1、启用远程桌面功能:首先,确保您的Windows 11是专业版,因为家庭版默认不支持远程桌面功能。您可以通过“设置” -> “系统” -&…...
使用 PyAMF / Django 实现 Flex 类映射
1、问题背景 PyAMF 是一个用于在 Flex 和 Python 之间进行通信的库,在使用 PyAMF 与 Flex 应用进行通信时,经常会遇到错误。例如,在发送一个 Flex Investor 对象到 Python 时,会得到一个 ‘KeyError: first_name’ 的错误。这是因…...
算法思想总结:字符串
一、最长公共前缀 . - 力扣(LeetCode) 思路1:两两比较 时间复杂度mn 实现findcomon返回两两比较后的公共前缀 class Solution { public:string longestCommonPrefix(vector<string>& strs) {//两两比较 string retstrs[0];size…...
滑块拼图验证码识别
通常滑块验证码都是横向滑动,今天看到一个比较特别的滑块拼图验证码,他不仅能在横向上滑动,还需要进行纵向滑动。如下图所示: 他的滑块在背景图片的左上角,需要鼠标拖动左上角的滑块,移动到背景图的缺口位置…...
Activity启动流程
1 冷启动与热启动 应用启动分为冷启动和热启动。 冷启动:点击桌面图标,手机系统不存在该应用进程,这时系统会重新fork一个子进程来加载Application并启动Activity,这个启动方式就是冷启动。 热启动:应用的热启动比冷…...
PHP转Go系列 | ThinkPHP与Gin框架之OpenApi授权设计实践
大家好,我是码农先森。 我之前待过一个做 ToB 业务的公司,主要是研发以会员为中心的 SaaS 平台,其中涉及的子系统有会员系统、积分系统、营销系统等。在这个 SaaS 平台中有一个重要的角色「租户」,这个租户可以拥有一个或多个子系…...
使用SOAP与TrinityCore交互(待定)
原文:SOAP with TrinityCore | TrinityCore MMo Project Wiki 如何使用SOAP与TC交互 SOAP代表简单对象访问协议,是一种类似于REST的基于标准的web服务访问协议的旧形式。只要必要的配置到位,您就可以利用SOAP向TrinityCore服务器发送命令。 …...
QQ频道导航退出
若该文为原创文章,转载请注明原文出处 本文章博客地址:https://hpzwl.blog.csdn.net/article/details/140413538 长沙红胖子Qt(长沙创微智科)博文大全:开发技术集合(包含Qt实用技术、树莓派、三维、OpenCV…...
MySQL里的累计求和
在MySQL中,你可以使用SUM()函数来进行累计求和。如果你想要对一个列进行累计求和,可以使用OVER()子句与ORDER BY子句结合,进行窗口函数的操作。 以下是一个简单的例子,假设我们有一个名为sales的表,它有两个列&#x…...
Python爬虫速成之路(3):下载图片
hello hello~ ,这里是绝命Coding——老白~💖💖 ,欢迎大家点赞🥳🥳关注💥💥收藏🌹🌹🌹 💥个人主页:绝命Coding-CSDN博客 &a…...
同三维T80004EA编解码器视频使用操作说明书:高清HDMI编解码器,高清SDI编解码器,4K超清HDMI编解码器,双路4K超高清编解码器
同三维T80004EA编解码器视频使用操作说明书:高清HDMI编解码器,高清SDI编解码器,4K超清HDMI编解码器,双路4K超高清编解码器 同三维T80004EA编解码器视频使用操作说明书:高清HDMI编解码器,高清SDI编解码器&am…...
ChatGPT提问获取高质量答案的艺术PDF下载书籍推荐分享
ChatGPT高质量prompt技巧分享pdf, ChatGPT提问获取高质量答案的艺术pdf。本书是一本全面的指南,介绍了各种 Prompt 技术的理解和利用,用于从 ChatGPTmiki sharing中生成高质量的答案。我们将探讨如何使用不同的 Prompt 工程技术来实现不同的目…...
微信小程序中的数据通信
方法1: 使用回调函数 在app.js中:可以在修改globalData后执行一个回调函数,这个回调函数可以是页面传递给app的一个更新函数。// app.js App({globalData: {someData: ,},setSomeData(newData, callback) {this.globalData.someData = newData;if (typeof callback === funct…...
everything搜索不到任何文件-设置
版本: V1.4.1.1024 (x64) 问题:搜索不到任何文件 click:[工具]->[选项]->下图所示 将本地磁盘都选中包含...
python如何结束程序运行
方法1:采用sys.exit(0),正常终止程序,从图中可以看到,程序终止后shell运行不受影响。 方法2:采用os._exit(0)关闭整个shell,从图中看到,调用sys._exit(0)后整个shell都重启了(RESTAR…...
InnoDB
InnoDB 是 MySQL 默认的存储引擎,它提供了事务支持、行级锁定和外键约束等高级功能。下面详细解析 InnoDB 的一些底层原理和关键特性。 1. 数据存储结构 表空间(Tablespace) InnoDB 使用表空间来管理数据存储,表空间可以是共享…...
测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...
<6>-MySQL表的增删查改
目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表…...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...
智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...
对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...
k8s业务程序联调工具-KtConnect
概述 原理 工具作用是建立了一个从本地到集群的单向VPN,根据VPN原理,打通两个内网必然需要借助一个公共中继节点,ktconnect工具巧妙的利用k8s原生的portforward能力,简化了建立连接的过程,apiserver间接起到了中继节…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
